精英家教网 > 高中数学 > 题目详情
已知
a
=(sin
3
,cos
3
),
b
=(-sin
3
,cos
3
),且θ∈[0,
π
3
].
(1)求
a
b
|
a
+
b
|
的最值; 
(2)若|k
a
+
b
|=
3
|
a
-k
b
|(k∈R),求k的取值范围.
考点:平面向量数量积的运算
专题:计算题,三角函数的求值,三角函数的图像与性质,平面向量及应用
分析:(1)运用向量的数量积的坐标表示,求得向量a,b的数量积和a,b的和的模,再由二倍角公式及θ的范围,结合余弦函数的单调性,即可得到最值;
(2)运用向量的平方即为模的平方,化简整理,由余弦函数的单调性,得到k的不等式,解得即可.
解答: 解:(1)
a
=(sin
3
,cos
3
),
b
=(-sin
3
,cos
3
),
a
b
=cos
3
cos
3
-sin
3
sin
3
=cos(
3
+
3
)=cos2θ,
|
a
+
b
|=
a
2
+
b
2
+2
a
b
=
1+1+2cos2θ
=|2cosθ|=2cosθ,
a
b
|
a
+
b
|
=
cos2θ
2cosθ
=
2cos2θ-1
2cosθ
=cosθ-
1
2cosθ

由θ∈[0,
π
3
],则cosθ∈[
1
2
,1],
则令t=cosθ,则有t-
1
2t
递增,当t=1,取得最大值
1
2
,t=
1
2
,取得最小值-
1
2

则有θ=0,
a
b
|
a
+
b
|
的最大值为
1
2
θ=
π
3
时,
a
b
|
a
+
b
|
的最小值为-
1
2

(2)若|k
a
+
b
|=
3
|
a
-k
b
|,则(k
a
+
b
2=3(
a
-k
b
2
即有k2
a
2
+
b
2
+2k
a
b
=3(
a
2
+k2
b
2
-2k
a
b

k2+1+2kcos2θ=3+3k2-6kcos2θ,
即cos2θ=
1+k2
4k

由于θ∈[0,
π
3
],则2θ∈[0,
3
],cos2θ∈[-
1
2
,1],
即有-
1
2
1+k2
4k
≤1,
解得,2-
3
≤k≤2+
3

则k的取值范围为[2-
3
,2+
3
].
点评:本题考查平面向量的数量积的坐标表示和性质,考查三角函数的化简和求值,考察余弦函数的单调性和值域,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义域为[a,b]的函数y=f(x)的图象的两个端点A、B,M(x,y)是f(x)图象上任意一点,其中x=λa+(1-λ)b(λ∈R),向量
ON
OA
+(1-λ)
OB
,其中O为坐标原点,若不等式|
MN
|≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.若函数y=x+
1
x
在[1,2]上“k阶线性近似”,则实数k的取值范围为(  )
A、[0,+∞)
B、[1,+∞)
C、[
3
2
-
2
,+∞)
D、[
3
2
+
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

由曲线|x|-|y|=|2x-3|所围成的图形的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

与双曲线x2-
y2
2
=1有共同渐近线,且过点(2,
2
)的双曲线方程是(  )
A、
x2
4
-y2=1
B、
x2
3
-
y2
6
=1
C、
x2
4
-
y2
3
=1
D、
x2
5
-
y2
12
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f1(x)=e|x-2a+1|,f2(x)=e|x-a|+1,x∈R,1≤a≤6.
(1)若a=2,求使f1(x)=f2(x)的x的值;
(2)若|f1(x)-f2(x)|=f2(x)-f1(x)对于任意的实数x恒成立,求a的取值范围;
(3)求函数g(x)=
f1(x)+f2(x)
2
-
|f1(x)-f2(x)|
2
在[1,6]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项公式为an=(-1)n+1
n+1
n
,则a7=(  )
A、8
B、-
8
7
C、
8
7
D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设中正确的是(  )
A、假设a,b,c不都是偶数
B、假设a,b,c都不是偶数
C、假设a,b,c至多有一个是偶数
D、假设a,b,c至多有两个是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:

现有7个质量和外形一样的小球,其中3个红球的编号为A1,A2,A3,2个黄球的编号为B1,B2,2个白球的编号为C1,C2.现从三种颜色的球中分别选出一个球,放在一个盒子内.
(1)求红球A1恰被选中的概率;
(2)求黄球B1和白球C1不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a<0,直线l1:2x+ay=2,l2:a2x+2y=1,若l1⊥l2,则a=
 

查看答案和解析>>

同步练习册答案