A. | $\frac{7}{17}$ | B. | $\frac{17}{7}$ | C. | $-\frac{5}{12}$ | D. | $\frac{10}{17}$ |
分析 由已知利用同角三角函数基本关系式可求cosα,tanα的值,根据两角和的正切函数公式及特殊角的三角函数值即可求解.
解答 解:∵$sinα=-\frac{5}{13},且α$为第四象限角,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{12}{13}$,tan$α=\frac{sinα}{cosα}$=-$\frac{5}{12}$,
∴$tan({α+\frac{π}{4}})$=$\frac{1+tanα}{1-tanα}$=$\frac{1-\frac{5}{12}}{1+\frac{5}{12}}$=$\frac{7}{17}$.
故选:A.
点评 本题主要考查了同角三角函数基本关系式,两角和的正切函数公式及特殊角的三角函数值的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $a>\frac{b}{3}$ | B. | $b<\frac{a}{3}$ | C. | $a≤\frac{b}{3}$ | D. | $b≥\frac{a}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{5}{6}$ | B. | $-\frac{6}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{π}{4}$,2π] | B. | [0,$\frac{π}{4}$] | C. | [-$\frac{π}{4}$,$\frac{π}{4}$] | D. | [0,$\frac{π}{4}$]∪[$\frac{7π}{4}$,2π] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com