精英家教网 > 高中数学 > 题目详情
已知圆C过点M(0,-2),N(3,1),且圆心C在直线x+2y+1=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)问是否存在满足以下两个条件的直线l:①斜率为1;②直线被圆C截得的弦为AB,以AB为直径的圆C1过原点.若存在这样的直线,请求出其方程;若不存在,说明理由.
(Ⅰ)设圆C的方程为x2+y2+Dx+Ey+F=0
-
D
2
-E+1=0
4-2E+F=0
10+3D+E+F=0
解得D=-6,E=4,F=4
∴圆C方程为x2+y2-6x+4y+4=0----------------------(5分)
(Ⅱ)设直线存在,其方程为y=x+b,它与圆C的交点设为A(x1,y1)、B(x2,y2),
则由
x2+y2-6x+4y+4=0
y=x+b
得2x2+2(b-1)x+b2+4b+4=0(*)
x1+x2=1-b
x1x2=
b2+4b+4
2
----------------------------(7分)
∴y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2
∵AB为直径,∴,∠AOB=90°,∴OA2+OB2=AB2
x12+y12+x22+y22=(x1-x2)2+(y1-y2)2
得x1x2+y1y2=0,---------------------------------(9分)
2x1x2+b(x1+x2)+b2=0
即b2+4b+4+b(1-b)+b2=0,b2+5b+4=0,∴b=-1或b=-4-----------(11分)
容易验证b=-1或b=-4时方程(*)有实根.
故存在这样的直线l有两条,其方程是y=x-1或y=x-4.--------------------(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,点A、B分别是椭圆
x2
36
+
y2
20
=1
的长轴的左、右端点,F为椭圆的右焦点,直线PF的方程为
3
x+y-3
2
=0
,且PA⊥PF.
(Ⅰ)求直线PA的方程;
(Ⅱ)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点F1(-
3
,0),F2
3
,0),动点R在曲线C上运动且保持|RF1|+|RF2|的值不变,曲线C过点T(0,1),
(Ⅰ)求曲线C的方程;
(Ⅱ)M是曲线C上一点,过点M作斜率分别为k1和k2的直线MA,MB交曲线C于A、B两点,若A、B关于原点对称,求k1•k2的值;
(Ⅲ)直线l过点F2,且与曲线C交于PQ,有如下命题p:“当直线l垂直于x轴时,△F1PQ的面积取得最大值”.判断命题p的真假.若是真命题,请给予证明;若是假命题,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

以抛物线y2=4x的焦点为右焦点的椭圆,上顶点为B2,右顶点为A2,左、右焦点为F1、F2,且|
F1B2
|cos∠B2F1F2=
3
3
|
OB2
|,过点D(0,2)的直线l,斜率为k(k>0),l与椭圆交于M,N两点.
(1)求椭圆的标准方程;
(2)若M,N的中点为H,且
OH
A2B2
,求出斜率k的值;
(3)在x轴上是否存在点Q(m,0),使得以QM,QN为邻边的四边形是个菱形?如果存在,求出m的范围;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于直线L:y=kx+1是否存在这样的实数,使得L与双曲线C:3x2-y2=1的交点A,B关于直线y=ax(a为常数)对称?若存在,求k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
2
+y2=1
的左、右焦点分别为F1,F2,下顶点为A,点P是椭圆上任一点,⊙M是以PF2为直径的圆.
(Ⅰ)当⊙M的面积为
π
8
时,求PA所在直线的方程;
(Ⅱ)当⊙M与直线AF1相切时,求⊙M的方程;
(Ⅲ)求证:⊙M总与某个定圆相切.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C以双曲线
x2
3
-y2=1
的焦点为顶点,以双曲线的顶点为焦点.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于点M,N两点(M,N不是左右顶点),且以线段MN为直径的圆过椭圆C左顶点A,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,A1、A2、F1、F2分别是双曲线C:
x2
9
-
y2
16
=1的左、右顶点和左、右焦点,M(x0、y0)是双曲线C上任意一点,直线MA2与动直线l:x=
9
x0
相交于点N.
(1)求点N的轨迹E的方程;
(2)点B为曲线E上第一象限内的一点,连接F1B交曲线E于另一点D,记四边形A1A2BD对角线的交点为G,证明:点G在定直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,M是平行四边形ABCD的边AB的中点,直线l过点M分别交AD,AC于点E,F,交CB的延长线于点N.若AE=2,AD=6,则=________.

查看答案和解析>>

同步练习册答案