精英家教网 > 高中数学 > 题目详情

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果对于任意的总成立,求实数的取值范围;
(Ⅲ)设函数,过点作函数图象的所有切线,令各切点得横坐标构成数列,求数列的所有项之和的值.

(Ⅰ);(Ⅱ);(Ⅲ).

解析试题分析:(Ⅰ)利用到导数法求解;(Ⅱ)构造新函数,用导数法求解;(Ⅲ)利用导数的几何意义求切线方程,将的坐标代入切线方程,求得,再利用两个函数的图像均关于点对称,它们交点的横坐标也关于对称成对出现.方程的根即所作的所有切线的切点横坐标构成的数列的项也关于对称成对出现,在内共构成1006对.
试题解析:(Ⅰ)由于
所以.           (2分)
,即时,
,即时,.
所以的单调递增区间为
单调递减区间为.                         (4分)
(Ⅱ)令,要使总成立,只需.
求导得
,则,()
所以上为增函数,所以.                       (6分)
分类讨论:
① 当时,恒成立,所以上为增函数,所以,即恒成立;
② 当时,在上有实根,因为上为增函数,
所以当时,,所以,不符合题意;
③ 当时,恒成立,所以上为减函数,则,不符合题意.
综合①②③可得,所求的实数的取值范围是.                    (9分)
(Ⅲ)因为,所以
设切点坐标为,则斜率为
切线方程为,              (11分)
的坐标代入切线方程,得

,即,           &

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的单调区间并比较的大小关系
(Ⅱ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数在区间上总不是单调函数,求的取值范围;
(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若曲线在点处的切线平行于轴,求的值;
(2)当时,若直线与曲线上有公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,试讨论函数的单调性;
(2)证明:对任意的 ,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-mlnx
(1)若函数f(x)在(,+∞)上是递增的,求实数m的取值范围;
(2)当m=2时,求函数f(x)在[1,e]上的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求证:函数上单调递增;
(2)若函数有四个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分共12分)已知函数,曲线在点处切线方程为
(Ⅰ)求的值;
(Ⅱ)讨论的单调性,并求的极大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于[1,2],[0,1],使成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案