精英家教网 > 高中数学 > 题目详情
7.设集合 A={x||x-$\frac{3}{2}$|=$\frac{1}{2}$},B={t|t2+2(a+1)t+(a2-5)=0}.若A∩B=B,则实数a的取值范围(  )
A.(-∞,-2]B.(-∞,-3]C.(-∞,-4]D.(-∞,-1]

分析 求出A中方程的解确定出A,根据A与B的交集为B,得到B为A的子集,求出a的范围即可.

解答 解:∵A={x||x-$\frac{3}{2}$|=$\frac{1}{2}$}={1,2},
B={t|t2+2(a+1)t+(a2-5)=0}.
由A∩B=B,得B⊆A.
当4(a+1)2-4(a2-5)<0,即a<-3时,B=∅,符合题意;
当4(a+1)2-4(a2-5)=0,即a=-3时,B={t|t2-4t+4=0}={2},符合题意;
4(a+1)2-4(a2-5)>0,即a>-3时,要使B⊆A,则B=A,
即$\left\{\begin{array}{l}{1+2=-2(a+1)}\\{1×2={a}^{2}-5}\end{array}\right.$,此方程组无解.
∴实数a的取值范围是(-∞,-3].
故选:B.

点评 本题考查含绝对值方程的解法,考查了交集与子集间的相互转换,体现了分类讨论的首项思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的通项公式是an=$\left\{\begin{array}{l}{3n+1(n为奇数)}\\{2n-2(n为偶数)}\end{array}\right.$,则a2•a3=20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足:a1=1,a2=$\frac{1}{5}$,nan+1-(n-1)an=anan+1(n∈N*且n≥2).
(Ⅰ)当n≥2时,求数列{$\frac{1}{(n-1){a}_{n}}$}的通项公式.
(Ⅱ)求证:a12+a${{\;}_{2}}^{2}$+…+a${{\;}_{n}}^{2}$$<\frac{13}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在直角△ABC中,AC=3,BC=4,∠C=90°,CD⊥AB,DE⊥BC,D,E为垂足,则DE=$\frac{48}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若数列{an}的每一项都不为零,且对于任意的n∈N*,都有$\frac{{a}_{n+2}}{{a}_{n}}$=q(q为常数),则称数列{an}为“类等比数列”.已知数列{bn}满足:b1=b(b∈R,b≠0),对于任意的n∈N*,都有bn•bn+1=2n+1
(1)求证:数列{bn}是“类等比数列”;
(2)若{bn}是单调递增数列,求实数b的取值范围;
(3)设数列{bn}的前n项和为Sn,试探讨$\lim_{n→∞}\frac{S_n}{{{b_n}+{b_{n+1}}}}$是否存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式$\frac{x+a}{{{x^2}+4x+3}}$>0的解集为{x|x>-3,x≠-1},则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设f(x)=|x2+2x-1|,若a<b<-1,且f(a)=f(b),则(a+1)(b+1)的取值范围是(  )
A.(-1,1)B.(0,1)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数y=f(x)在区间(a,b)上的导函数f′(x),f′(x)在区间(a,b)上的导函数f″(x),若在区间(a,b)上f″(x)<0,则称函数f(x)在区间(a,b)上为“凸函数”,已知f(x)=$\frac{1}{20}$x5-$\frac{1}{12}$mx4-2x2在(1,3)上为“凸函数”,则实数m的取值范围是(  )
A.(-∞,$\frac{23}{9}$)B.[-3,$\frac{23}{9}$]C.[$\frac{23}{9}$,+∞)D.[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)看看我们生活中的挂历:横看、竖看、斜看,都是天然的等差数列.随意框选9个数,如图1,可以发现12等于周围8个数之和的八分之一.请用所学数学知识对此作出简要的说明.

(2)如图2,在框选出4×4的方框中,第一行的四个数字依次为4,5,6,7.甲乙丙三人从这16个数中各挑选出一个数字,甲选中的数字是18,并删去18所在的行和列;乙在5与12这两个数中任意挑选一个数,记为x,再删去x所在的行和列;丙在27与28这两个数中任意挑选一个数,记为y,再删去y所在的行和列;最后剩下的一个数记为w,试列式计算以说明这四个数18,x,y,w之和是一个定值.

查看答案和解析>>

同步练习册答案