精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的左焦点为,且点C上.

C的方程;

设点P关于x轴的对称点为点不经过P点且斜率为的直线1C交于AB两点,直线PAPB分别与x轴交于点MN,求证:

【答案】(1);(2)见解析

【解析】

1)根据题意,求得,结合椭圆的定义求得a,由半焦距及,即可得椭圆的标准方程。

2)设出直线的方程,将直线方程与椭圆方程联立,根据韦达定理及判别式即可求得,结合椭圆的对称性即可证明

设右焦点为,则

由题意知

由椭圆的定义,得,所以

又椭圆C的半焦距,所以

所以椭圆C的方程为

证明:设直线l的方程为

6

所以

如图6所示,由点P关于x轴的对称点为点Q,则轴,

又直线PAPB分别与x轴交于点MN,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知甲箱中装有3个红球,2个黑球,乙箱中装有2个红球,3个黑球,这些球除颜色外完全相同,某商场举行有奖促销活动,规定顾客购物1000元以上,可以参与抽奖一次,设奖规则如下:每次分别从以上两个箱子中各随机摸出2个球,共4个球,若摸出4个球都是红球,则获得一等奖,奖金300元;摸出的球中有3个红球,则获得二等奖,奖金200元;摸出的球中有2个红球,则获得三等奖,奖金100元;其他情况不获奖,每次摸球结束后将球放回原箱中.

1)求在1次摸奖中,获得二等奖的概率;

2)若3人各参与摸奖1次,求获奖人数X的数学期望

3)若商场同时还举行打9折促销活动,顾客只能在两项促销活动中任选一项参与.假若你购买了价值1200元的商品,那么你选择参与哪一项活动对你有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋里装有大小相同的5个小球,其中红色两个,其余3个颜色各不相同现从中任意取出3个小球,其中恰有2个小球颜色相同的概率是______;若变量X为取出的三个小球中红球的个数,则X的数学期望______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知是等边三角形,平面,点为棱的中点.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求a

(2)证明:存在唯一的极大值点,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有报道称,据南方科技大学、上海交大等8家单位的最新研究显示:ABOAB血型与COVID19易感性存在关联,具体调查数据统计如图:

根据以上调查数据,则下列说法错误的是(

A.与非O型血相比,O型血人群对COVID19相对不易感,风险较低

B.与非A型血相比,A型血人群对COVID19相对易感,风险较高

C.O型血相比,B型、AB型血人群对COVID19的易感性要高

D.A型血相比,非A型血人群对COVID19都不易感,没有风险

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形,如上图.现在图(3)中随机选取一个点,则此点取自阴影部分的概率为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆离心率为,以原点为圆心,以椭圆C的短半轴长为半径的圆O与直线相切.

1)求椭圆C的方程;

2)设不过原点O的直线与该椭圆交于PQ两点,满足直线OPPQOQ的斜率依次成等比数列,求OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列事实:|x||y|≤1的不同整数解(xy)的个数为5|x||y|≤2的不同整数解(xy)的个数为13|x||y|≤3的不同整数解(xy)的个数为25|x||y|≤4的不同整数解(xy)的个数为41|x||y|≤5的不同整数解(xy)的个数为61….|x||y|≤20的不同整数解(xy)的个数为(

A.841B.761C.925D.941

查看答案和解析>>

同步练习册答案