精英家教网 > 高中数学 > 题目详情
已知抛物线y2=4x的准线过双曲线
x2
a2
-
y2
b2
=1(a>0 , b>0)
的左顶点,且此双曲线的一条渐近线为y=2x,则双曲线的焦距等于(  )
A、
5
B、2
5
C、
3
D、2
3
分析:先求出抛物线y2=4x的准线方程,确定 a 值,在根据渐近线方程确定b的值,从而确定c的值,焦距为2c.
解答:解:由抛物线y2=4x知,p=2,
准线方程为:x=-1,∴a=1,
∵双曲线的一条渐近线为y=2x,
b
a
=2,
∴b=2∴c2=a2+b2=5,
∴焦距2c=2
5

故答案选 B
点评:本题考查抛物线与双曲线的简单性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线与抛物线交于A、B两点,弦AB的中点为P,AB的垂直平分线与x轴交于点E(x0,0).
(1)求k的取值范围;
(2)求证:x0>3;
(3)△PEF能否成为以EF为底的等腰三角形?若能,求此k的值;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线
y
2
 
=4x
的焦点为F,过点A(4,4)作直线l:x=-1垂线,垂足为M,则∠MAF的平分线所在直线的方程为
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,焦点为F,顶点为O,点P(m,n)在抛物线上移动,Q是OP的中点,M是FQ的中点.
(1)求点M的轨迹方程.
(2)求
nm+3
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x与直线2x+y-4=0相交于A、B两点,抛物线的焦点为F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,其焦点为F,P是抛物线上一点,定点A(6,3),则|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步练习册答案