精英家教网 > 高中数学 > 题目详情

【题目】已知函数 为实数, 为自然对数的底数, .

(1)当 时,设函数的最小值为,求的最大值;

(2)若关于的方程在区间上有两个不同实数解,求的取值范围.

【答案】(1)(2)

【解析】试题分析:(1)先求函数导数,并在定义域内求导函数零点: ,再列表分析导函数符号变化规律,确定单调性及最小值 再利用导数研究函数最值先求导数确定定义域内导函数零点,最后根据单调性确定函数最值.(2)先变量分离: ,转化为研究函数图像:当时, 单调减, ;当时, 单调增, , 因此有两个不同实数解需

试题解析:解:(1)当时,函数

,得,因为时,

所以

,令,得

且当时, 有最大值1,

所以的最大值为1(表格略),(分段写单调性即可),此时.

(2)由题意得,方程在区间上有两个不同实数解,

所以在区间上有两个不同的实数解,

即函数图象与函数图象有两个不同的交点,

因为,令,得

所以当时,

时,

所以 满足的关系式为,即的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】统计表明,某种型号的汽车在匀速行驶中每小时耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为: ,已知甲、乙两地相距100千米.

(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?

(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一袋中装有6个黑球,4个白球.如果不放回地依次取出2个球.求:

(1)第1次取到黑球的概率;

(2)第1次和第2次都取到黑球的概率;

(3)在第1次取到黑球的条件下,第2次又取到黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且SnS4.

(1)求{an}的通项公式;

(2)设bn,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,其中 为非零常数.

(1)若 ,求证: 为等比数列,并求数列的通项公式;

(2)若数列是公差不等于零的等差数列.

①求实数 的值;

②数列的前项和构成数列,从中取不同的四项按从小到大排列组成四项子数列.试问:是否存在首项为的四项子数列,使得该子数列中的所有项之和恰好为2017?若存在,求出所有满足条件的四项子数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(sinx,sin(x﹣ )), =(sinx,cos(x+ )),f(x)=
(1)求f(x)的解析式及周期;
(2)求f(x)在x∈[﹣ ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双“十一”结束之后,某网站针对购物情况进行了调查,参与调查的人主要集中在[20,50]岁之间,若规定:购物600(含600元)以下者,称为“理智购物”,购物超过600元者被网友形象的称为“剁手党”,得到如下统计表:

分组编号

年龄分组

球迷

所占比例

1

[20,25)

1000

0.5

2

[25,30)

1800

0.6

3

[30,35)

1200

0.5

4

[35,40)

a

0.4

5

[40,45)

300

0.2

6

[45,50]

200

0.1

若参与调查的“理智购物”总人数为7720人.
(1)求a的值;
(2)从年龄在[20,35)的“剁手党”中按照年龄区间分层抽样的方法抽取20人; ①从这20人中随机抽取2人,求这2人恰好属于同一年龄区间的概率;
②从这20人中随机抽取2人,用ζ表示年龄在[20,25)之间的人数,求ξ的分布列及期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(lnx﹣ax).
(1)a= 时,求f(x)在点(1,f(1))处的切线方程;
(2)若f(x)存在两个不同的极值x1 , x2 , 求a的取值范围;
(3)在(2)的条件下,求f(x)在(0,a]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣x
(1)求f(x)的解析式;
(2)画出f(x)的图象;
(3)若方程f(x)=k有4个解,求k的范围.

查看答案和解析>>

同步练习册答案