精英家教网 > 高中数学 > 题目详情
某几何体如图所示,该几何体的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.该几何体的正视图和俯视图如图所示.
(1)请画出该几何体的侧视图,并标明线段长度;
(2)求该几何体的体积;
(3)求该几何体的侧面积.
考点:由三视图求面积、体积,棱柱、棱锥、棱台的侧面积和表面积
专题:计算题,作图题,空间位置关系与距离
分析:(1)由题意,侧视图如正视图相同,
(2)先求V长方体=40×40×20=32000;再求V正四棱锥=
1
3
×40×40×60=32000;求和即可;
(3)先求斜高h=
602+202
=20
10
;从而求侧面积.
解答: 解:(1)由题意,侧视图如正视图相同,如右图,
(2)V长方体=40×40×20=32000;
V正四棱锥=
1
3
×40×40×60=32000;
故V=32000+32000=64000(cm3);
(3)斜高h=
602+202
=20
10

故侧面积为S=40×20×4+
1
2
×40×20
10
×4
=3200+1600
10
(cm2).
点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>b,则①ac2>bc2;②2a>2b;③
1
a
1
b
;④a3>b3;⑤|a|>|b|.正确的结论有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
sin(2x-
π
4
)+2cos2x-1.
(Ⅰ)求f(x)的最大值及其取得最大值时x的集合;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=
3
4
,A=
π
3
,b=f(
12
),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在满足x2+y2≤25的实数对(x,y)中,任取一组(x,y),恰使|x|+|y|≤5成立的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C的中心为原点O,F(-2
5
,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=4,则椭圆C的方程为(  )
A、
x2
25
+
y2
5
=1
B、
x2
36
+
y2
16
=1
C、
x2
30
+
y2
10
=1
D、
x2
45
+
y2
25
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

设P:
x2
1-2m
+
y2
m+2
=1表示双曲线,q:函数g(x)=3x2+2mx+m+
4
3
有两个不同的零点.
(1)若p为假命题,求实数m的取值范围,
(2)若p∧q,为假命题,pⅤq为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将(1+
1
3
x)n展开式的各项依次记为a1(x),a2(x),a3(x),…,an(x),an+1(x),设F(x)=a1(x)+2a2(x)+3a3(x)+…+nan(x)+(n+1)an+1(x).
(1)是否存在n∈N*,使得a1(x),a2(x),a3(x)的系数成等比数列?若存在,求出n的值;若不存在,请说明理由.
(2)求证:对任意x1,x2∈[0,3],恒有|F(x1)-F(x2)|<2n-1(n+2).

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学使用计算器求10个数据的平均值时,错将其中一个数据20输入为10,结果得到平均数14,那么由此算出的方差与实际方差的差为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有限数列A={a1,a2,…,an}的前n项和为Sn,定义
S1+S2+…+Sn
n
为A的“凯森和”,若数列{a1,a2,…,a99}的“凯森和”为1000,则数列{1,a1,a2,…,a99}的“凯森和”为
 

查看答案和解析>>

同步练习册答案