精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2+(lga+2)x+lgb满足f(﹣1)=﹣2且对于任意xR,恒有f(x)2x成立.

(1)求实数a,b的值;

(2)解不等式f(x)<x+5.

【答案】(1)100;(2)

【解析】试题分析:1)由,代入函数解析式得到化简后得到关于 的等式记作②,又因为恒成立,把的解析式代入后,令0,根据平方大于等于0,即可求出 的值,把的值代入②即可求出的值;
2)由(1)可确定出的解析式,然后解关于的一元二次不等式即可.

试题解析:(1)由f(﹣1)=﹣2知,lgb﹣lga+1=0①,所以②.

又f(x)2x恒成立,f(x)﹣2x0恒成立,

则有x2+xlga+lgb≥0恒成立,

△=(lga)2﹣4lgb≤0,

式代入上式得:(lgb)2﹣2lgb+1≤0,即(lgb﹣1)2≤0,

故lgb=1即b=10,代入得,a=100;

(2)由(1)知f(x)=x2+4x+1,f(x)<x+5,

即x2+4x+1<x+5,

所以x2+3x﹣4<0,

解得﹣4<x<1,

因此不等式的解集为{x|﹣4<x<1}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某居民区的物业部门每月向居民收取卫生费,计费方法如下:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=16BC=10AA1=8,点EF分别在A1B1D1C1上,A1E=D1F=4,过点EF的平面α与此长方体的面相交,交线围成一个正方形.

1)在图中画出这个正方形(不必说明画法和理由);

2)求直线AF与平面α所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P为椭圆C: =1(a>b>0)的下顶点,M,N在椭圆上,若四边形OPMN为平行四边形,α为直线ON的倾斜角,若α∈( ],则椭圆C的离心率的取值范围为( )
A.(0, ]
B.(0, ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】半径为2的球O内有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该四棱柱的侧面积之差是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数fx= a>0a≠1.

(Ⅰ)求函数fx)的定义域;

(Ⅱ)判断函数fx)的奇偶性,并加以证明;

(Ⅲ)设a=,解不等式fx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mlnx﹣x2+2(m∈R).
(1)当m=1时,求f(x)的单调区间;
(2)若f(x)在x=1时取得极大值,求证:f(x)﹣f′(x)≤4x﹣3;
(3)若m≤8,当x≥1时,恒有f(x)﹣f′(x)≤4x﹣3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在三棱锥P﹣ABC中,PA⊥面ABC,ACBC,且PA=AC=BC=1,点EPC的中点,作EFPBPB于点F.

(Ⅰ)求证:PB⊥平面AEF;

(Ⅱ)求二面角A﹣PB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是函数f(x)=msinωx﹣cosωx(m>0)的一条对称轴,且f(x)的最小正周期为π
(Ⅰ)求m值和f(x)的单调递增区间;
(Ⅱ)设角A,B,C为△ABC的三个内角,对应边分别为a,b,c,若f(B)=2, ,求 的取值范围.

查看答案和解析>>

同步练习册答案