分析 运用正弦定理可得△ABC的外接圆的直径2r,再由球的半径和球心到截面的距离、及截面圆的半径构成直角三角形,即可求得球的半径,再由球的体积公式计算即可得到.
解答 解:由于∠BAC=135°,BC=2,
则△ABC的外接圆的直径2r=$\frac{2}{sin135°}$=2$\sqrt{2}$,
即有r=$\sqrt{2}$,
由于PA⊥平面ABC且PA=2,所以球心O到平面ABC的距离为1,
则由勾股定理可得,球的半径R=$\sqrt{2+1}$=$\sqrt{3}$,
即有此球O的体积为V=$\frac{4}{3}$πR3=$\frac{4}{3}$π×($\sqrt{3}$)3=4$\sqrt{3}$π.
故答案为:4$\sqrt{3}$π.
点评 本题考查球的体积的求法,主要考查球的截面的性质:球的半径和球心到截面的距离、及截面圆的半径构成直角三角形,同时考查正弦定理的运用:求三角形的外接圆的直径,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 35 | B. | 28 | C. | 21 | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com