精英家教网 > 高中数学 > 题目详情

【题目】如图,在南北方向有一条公路,一半径为100的圆形广场(圆心为)与此公路所在直线相切于点,点为北半圆弧(弧)上的一点,过点作直线的垂线,垂足为,计划在内(图中阴影部分)进行绿化,设的面积为(单位:),

1)设,将表示为的函数;

2)确定点的位置,使绿化面积最大,并求出最大面积.

【答案】1.

2)当点p距公路边界时,绿化面积最大,.

【解析】

1)由三角函数的定义可用表示AQPQ,从而代入三角形面积公式,得答案;

2)对(1)问中函数求导,利用导数求得最大值,得答案.

1)由题可知.

的面积

.

2

,则(舍),此时

时,关于为增函数.

时,关于为减函数.

所以当时,

此时

故:当点p距公路边界时,绿化面积最大,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某个地区计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水的年入流量(年入流量:一年内上游来水与库区降水之和,单位:十亿立方米)都在4以上,其中,不足8的年份有10年,不低于8且不超过12的年份有35年,超过12的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.

1)求未来4年中,至多有1年的年入流量超过12的概率;

2)若水的年入流量与其蕴含的能量(单位:百亿万焦)之间的部分对应数据为如下表所示:

年入流量

6

8

10

12

14

蕴含的能量

1.5

2.5

3.5

5

7.5

用最小二乘法求出关于的线性回归方程;(回归方程系数用分数表示)

3)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:

年入流量

发电机最多可运行台数

1

2

3

若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

附:回归方程系数公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的外接球O的半径为,则过该正方体的三个顶点的平面截球O所得的截面的面积为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥ABAB是圆O的直径).规划在公路l上选两个点PQ,并修建两段直线型道路PBQA.规划要求:线段PBQA上的所有点到点O的距离均不小于圆O的半径.已知点AB到直线l的距离分别为ACBDCD为垂足),测得AB=10AC=6BD=12(单位:百米).

1)若道路PB与桥AB垂直,求道路PB的长;

2)在规划要求下,PQ中能否有一个点选在D处?并说明理由;

3)对规划要求下,若道路PBQA的长度均为d(单位:百米).求当d最小时,PQ两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市小区有一个矩形休闲广场,米,广场的一角是半径为米的扇形绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅(宽度不计),点在线段上,并且与曲线相切;另一排为单人弧形椅沿曲线(宽度不计)摆放.已知双人靠背直排椅的造价每米为元,单人弧形椅的造价每米为元,记锐角,总造价为元.

1)试将表示为的函数,并写出的取值范围;

2)如何选取点的位置,能使总造价最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块半圆形空地,开发商计划建造一个矩形游泳池及左右两侧两个大小相同的矩形休息区,其中半圆的圆心为,半径为,矩形的一边上,矩形的一边上,点在圆周上,在直径上,且,设.若每平方米游泳池的造价和休息区造价分别为.

1)记游泳池及休息区的总造价为,求的表达式;

2)为进行投资预算,当为何值时,总造价最大?并求出总造价的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的极值点的个数;

2)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产的产品中分正品与次品,正品重,次品重,现有5袋产品(每袋装有10个产品),已知其中有且只有一袋次品(10个产品均为次品)如果将5袋产品以15编号,第袋取出个产品(),并将取出的产品一起用秤(可以称出物体重量的工具)称出其重量,若次品所在的袋子的编号是2,此时的重量_________;若次品所在的袋子的编号是,此时的重量_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性并指出相应单调区间;

2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案