【题目】已知(a>0,且a≠1).
(1)讨论f(x)的奇偶性;
(2)求a的取值范围,使f(x)>0在定义域上恒成立.
【答案】(1)见解析;(2)
【解析】
(1)依题意,可得函数f(x)的定义域为{x|x≠0},利用函数奇偶性的定义可判断出f(﹣x)=f(x),从而可知f(x)的奇偶性;
(2)由(1)知f(x)为偶函数,故只需讨论x>0时的情况,依题意,当x>0时,由f(x)>0恒成立,即可求得a的取值范围.
(1)由于ax-1≠0,则ax≠1,得x≠0,
所以函数f(x)的定义域为{x|x≠0}.
对于定义域内任意x,有
f(-x)= (-x)3
= (-x)3
= (-x)3
=x3=f(x).
∴f(x)是偶函数.
(2)由(1)知f(x)为偶函数,
∴只需讨论x>0时的情况,当x>0时,要使f(x)>0,即x3>0,
即+>0,即>0,则ax>1.
又∵x>0,∴a>1.
因此a>1时,f(x)>0.
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,2AE=BD=2.
(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求二面角D﹣EC﹣B的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f′(x)﹣g(x)(f′(x)为函数f(x)的导函数)在[a,b]上有且只有两个不同的零点,则称f(x)是g(x)在[a,b]上的“关联函数”.若f(x)= +4x是g(x)=2x+m在[0,3]上的“关联函数”,则实数m的取值范围是( )
A.
B.[﹣1,0]
C.(﹣∞,﹣2]
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣x3+ax2+bx+c图象上的点P(1,﹣2)处的切线方程为y=﹣3x+1.
(1)若函数f(x)在x=﹣2时有极值,求f(x)的表达式
(2)若函数f(x)在区间[﹣2,0]上单调递增,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.
(1)求证:FC∥平面EAD;
(2)求二面角A-FC-B的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com