精英家教网 > 高中数学 > 题目详情

【题目】已知a,b,c分别为△ABC内角A,B,C的对边,且
(1)求A的值.
(2)若a=2,△ABC的面积为 ,求b,c的值.

【答案】
(1)解:因为

所以

又因为0<B+C<π,

所以

因为A+B+C=π,

所以


(2)解:因为△ABC的面积S= =

所以bc=4,

由余弦定理a2=b2+c2﹣2bccosA,得c2+b2=8,

联立 ,解得

因为b>0,c>0,

所以b=c=2.


【解析】(1)由已知可得 ,结合范围0<B+C<π,可求 ,结合三角形内角和定理可求A的值.(2)利用三角形面积公式可求bc=4,由余弦定理得c2+b2=8,联立即可得解.
【考点精析】根据题目的已知条件,利用正弦定理的定义和余弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(ax﹣1)(x﹣1).
(1)若不等式f(x)<0的解集为{x|1<x<2},求实数a的值;
(2)当a>0时,解关于x的不等式f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在区间D上的函数y=f(x)满足:对x∈D,M∈R,使得|f(x)|≤M恒成立,则称函数y=f(x)在区间D上有界.则下列函数中有界的是:
①y=sinx;② ;③y=tanx;④
⑤y=x3+ax2+bx+1(﹣4≤x≤4),其中a,b∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标与参数方程

在直角坐标系,直线的参数方程是为参数).在以为极点, 轴正半轴为极轴建立极坐标系中,曲线 .

(1)当 时,判断直线与曲线的位置关系;

(2)当时,若直线与曲线相交于 两点,设,且,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x,y的方程C:x2+y2﹣2x﹣4y+m=0.
(1)当m为何值时,方程C表示圆.
(2)若圆C与直线l:x+2y﹣4=0相交于M,N两点,且MN= ,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为( )
A.t≤﹣1
B.t<﹣1
C.t≤﹣3
D.t≥﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为参数), 上的动点,且满足为坐标原点),以原点为极点, 轴的正半轴为极轴建立坐标系,点的极坐标为.

(1)求线段的中点的轨迹的普通方程;

(2)利用椭圆的极坐标方程证明为定值,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,表示相等函数的一组是(
A.f(x)=|x|,
B.
C. ,g(x)=x+1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域与值域都是[﹣2,2]的两个函数f(x)、g(x)的图象如图所示(实线部分),则下列四个命题中,
①方程f[g(x)]=0有6个不同的实数根;
②方程g[f(x)]=0有4个不同的实数根;
③方程f[f(x)]=0有5个不同的实数根;
④方程g[g(x)]=0有3个不同的实数根;
正确的命题是(

A.②③④
B.①④
C.②③
D.①②③④

查看答案和解析>>

同步练习册答案