精英家教网 > 高中数学 > 题目详情

(本题满分13分)如图所示,在矩形ABCD中,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′—EC—B是直二面角.

(1)证明:BE⊥C D′;

(2)求二面角D′—BC—E的正切值.

 

【答案】

(1)见解析;      (2)

【解析】解:(1)∵AD=2AB=2,E是AD的中点,

∴△BAE,△CDE是等腰直角三角形,

易知, ∠BEC=90°,即BE⊥EC.

又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC,

∴BE⊥面D′EC,又C D′Ì 面D′EC ,  ∴BE⊥CD′;

(2)法一:设M是线段EC的中点,过M作MF⊥BC垂足为F,连接D′M,D′F,则D′M⊥EC.

∵平面D′EC⊥平面BEC,

∴D′M⊥平面EBC,

∴MF是D′F在平面BEC上的射影,由三垂线定理得:

D′F⊥BC

∴∠D′FM是二面D′—BC—E的平面角.

在Rt△D′MF中,D′M=EC=,MF=AB=

即二面角D′—BC—E的正切值为.

法二:如图,以EB,EC为x轴、y轴,过E垂直于平面BEC的射线为z轴,建立空间直角坐标系.

则B(,0,0),C(0,,0),D′(0,

设平面BEC的法向量为;平面D′BC的法向量为

Þ tan= ∴二面角D′—BC—E的正切值为.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014届福建省高二上学期期中考试理科数学试卷(解析版) 题型:解答题

(本题满分13分) 如图,某观测站在城的南偏西的方向上,由城出发有一公路,走向是南偏东,在处测得距为31公里的公路上处,有一人正沿公路向城走去,走了20公里后,到达处,此时间距离为公里,问此人还需要走多少公里到达城.

 

查看答案和解析>>

科目:高中数学 来源:2014届福建省高二上学期期中考试理科数学试卷(解析版) 题型:解答题

(本题满分13分)如图,在平行六面体中,的中点,设

(1)用表示

(2)求的长.

 

查看答案和解析>>

科目:高中数学 来源:2013届湖北省武汉市高二下期末理科数学试卷(解析版) 题型:解答题

(本题满分13分)如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BCAD, ABAD, ,OAD中点.

(1)求直线与平面所成角的余弦值;

(2)求点到平面的距离

(3)线段上是否存在点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本题满分13分)

如图,在三棱柱中,已知侧面

(1)求直线C1B与底面ABC所成角的正弦值;

(2)在棱(不包含端点上确定一点的位置,使得(要求说明理由).

(3)在(2)的条件下,若,求二面角的大小.

 

查看答案和解析>>

同步练习册答案