【题目】已知实数,函数.
(1)当时,求函数的值域;
(2)当时,判断函数的单调性,并证明;
(3)求实教的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.
【答案】(1). (2)x∈[0,1)时,f(x)递增;x∈(﹣1,0]时,f(x)递减;
(3).
【解析】
(1)判a=0时,化简函数,即可求f(x)的最小值;
(2)先化简函数,得出函数的单调性,再利用定义进行证明;
(3)换元,原问题等价于求实数a的范围,使得在区间上,恒有2ymin>ymax.
由题意,f(x)的定义域为(﹣1,1),且f(x)为偶函数.
(1)a=0时,
∴x∈(﹣1,1)时,, , ∴的值域为.
(2)a=1时,
∴x∈[0,1)时,f(x)递增;x∈(﹣1,0]时,f(x)递减;
由于f(x)为偶函数,
∴只对x∈[0,1)时,证明f(x)递增.
设0≤x1<x2<1,
∴,得
∴x∈[0,1)时,f(x)递增成立;同理证明x∈(﹣1,0]时,f(x)递减;
∴x∈[0,1)时,f(x)递增;x∈(﹣1,0]时,f(x)递减;
(3)设,则
∵,
∴,∴
从而原问题等价于求实数a的范围,使得在区间上,恒有2ymin>ymax.
①当时,在上单调递增,∴,由2ymin>ymax得,
从而;
②当时,在上单调递减,在上单调递增,∴,
由2ymin>ymax得,从而;
③当时,在上单调递减,在上单调递增,
∴ymin=2,ymax=,
由2ymin>ymax得,从而;
④当a≥1时,在上单调递减,∴,
由2ymin>ymax得,从而;
综上,.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为,过点的直线的参数方程为(为参数).
(Ⅰ)求直线的普通方程与曲线的直角坐标方程;
(Ⅱ)若直线与曲线交于、两点,求的值,并求定点到,两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)(2017·长春市二模)如图,在四棱锥中,底面是菱形,,平面,,点,分别为和中点.
(1)求证:直线平面;
(2)求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.
按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.
(1)计算弧田的实际面积;
(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取100名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在的男生人数有16人.
(1)试问在抽取的学生中,男,女生各有多少人?
(2)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?
总计 | |||
男生身高 | |||
女生身高 | |||
总计 |
(3)在上述100名学生中,从身高在之间的男生和身高在之间的女生中间按男、女性别分层抽样的方法,抽出6人,从这6人中选派2人当旗手,求2人中恰好有一名女生的概率.
参考公式:
参考数据:
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为且过点椭圆C与轴的交点为A、B(点A位于点B的上方),直线与椭圆C交于不同的两点M、N(点M位于点N的上方).
(1)求椭圆C的方程;
(2)求△OMN面积的最大值;
(3)求证:直线AN和直线BM交点的纵坐标为常值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】科学研究证实,二氧化碳等温室气体的排放(简称碳排放)对全球气候和生态环境产生了负面影响.环境部门对A市每年的碳排放总量规定不能超过550万吨,否则将采取紧急限排措施.已知A市2013年的碳排放总量为400万吨,通过技术改造和倡导低碳生活等措施,此后每年的碳排放量比上一年的碳排放总量减少10%.同时,因经济发展和人口增加等因素,每年又新增加碳排放量m万吨(m>0).
(1)求A市2015年的碳排放总量(用含m的式子表示);
(2)若A市永远不需要采取紧急限排措施,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在上的函数,若存在正常数,使得对一切均成立,则称是“控制增长函数”。在以下四个函数中:①②③④是“控制增长函数”的有(空格上填入函数代码)________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com