精英家教网 > 高中数学 > 题目详情
函数f(x)的定义域为(-∞,0)∪(0,+∞),且满足对任意非零实数x1,x2都有f(x1x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明;
(3)若f(4)=1,且f(x)在(0,+∞)为增函数,求满足f(2x-6)≤2成立的x的取值范围.
分析:(1)用特殊值法,在f(x1x2)=f(x1)+f(x2)中,令x1=x2=1,可得f(1)=f(1)+f(1),即可得答案;
(2)在f(x1x2)=f(x1)+f(x2)中,令x1=x2=-1,可得f(1)=f(-1)+f(-1),有(1)可得f(-1)=0,进而在f(x1x2)=f(x1)+f(x2)中,令x1=-1,x2=x,可得f(-x)=f(-1)+f(x),即可得答案;
(3)根据题意,由函数的定义域可得2x-6≠0,解可得x≠3,在f(x1x2)=f(x1)+f(x2)中,令x1=x2=4,可得f(16)=2,则f(2x-6)≤2可以变形为f(2x-6)≤f(16),结合函数的单调性可得|2x-6|≤16,解可得x的范围,结合x≠3,可得答案.
解答:解:(1)在f(x1x2)=f(x1)+f(x2)中,令x1=x2=1,可得f(1)=f(1)+f(1),即f(1)=0,
(2)在f(x1x2)=f(x1)+f(x2)中,令x1=x2=-1,可得f(1)=f(-1)+f(-1),
又由f(1)=0,可得f(-1)=0,
在f(x1x2)=f(x1)+f(x2)中,令x1=-1,x2=x,可得f(-x)=f(-1)+f(x),即f(-x)=f(x),
则f(x)为偶函数;
(3)根据题意,对于f(2x-6),有2x-6≠0,则x≠3,
在f(x1x2)=f(x1)+f(x2)中,令x1=x2=4,可得f(16)=f(4)+f(4)=2,
f(2x-6)≤2⇒f(2x-6)≤f(16),
又由f(x)在(0,+∞)为增函数,则有|2x-6|≤16,
解可得,-5≤x≤11,又由x≠3,
则x的取值范围是[-5,3)∪(3,11].
点评:本题考查抽象函数的应用,解(3)注意函数的定义域为(-∞,0)∪(0,+∞),必有2x-6≠0,这是易错点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为{x|x≠0},且满足对于定义域内任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判断f(x)的奇偶性并证明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函数,解关于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域是[0,1),则F(x)=f[log 
12
(3-x)
]的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为(-1,1),它在定义域内既是奇函数又是增函数,且f(a-3)+f(4-2a)<0,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为[-1,2],则函数
f(x+2)
x
的定义域为(  )
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步练习册答案