【题目】已知数列{an}的前n项和为Sn , 若4Sn=(2n﹣1)an+1+1,且a1=1.
(1)求数列{an}的通项公式;
(2)设cn= ,数列{cn}的前n项和为Tn .
①求Tn;
②对于任意的n∈N*及x∈R,不等式kx2﹣6kx+k+7+3Tn>0恒成立,求实数k的取值范围.
【答案】
(1)解:∵4Sn=(2n﹣1)an+1+1,
∴4Sn﹣1=(2n﹣3)an+1,n≥2
∴4an=(2n﹣1)an+1﹣(2n﹣3)an,
整理得(2n+1)an=(2n﹣1)an+1,
即 = ,
∴ =3, = ,…, =
以上各式相乘得 =2n﹣1,又a1=1,
所以an=2n﹣1,
(2)解:①∵cn= = = ( ﹣ ),
∴Tn= (1﹣ + ﹣ +…+ ﹣ )= (1﹣ )= ,
②由①可知Tn= ,
∴ ≥ ,
∵kx2﹣6kx+k+7+3Tn>0恒成立,
∴kx2﹣6kx+k+8>0恒成立,
当k=0时,8>0恒成立,
当k≠0时,则得 ,解得0<k<1,
综上所述实数k的取值范围为[0,1)
【解析】(1)充分利用已知4Sn=(2n﹣1)an+1+1,将式子中n换成n﹣1,然后相减得到an与an+1的关系,利用累乘法得到数列的通项,(2)①利用裂项求和,即可求出Tn ,
②根据函数的思想求出 ≥ ,问题转化为kx2﹣6kx+k+8>0恒成立,分类讨论即可.
【考点精析】通过灵活运用数列的前n项和和数列的通项公式,掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.
科目:高中数学 来源: 题型:
【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是89.
(1)求和的值;
(2)计算乙班7位学生成绩的方差.
(3)从成绩在90分以上的学生中随机抽取两名学生,求乙班至少有一名学生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,两焦点分别为,右顶点为, .
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设过定点的直线与双曲线的左支有两个交点,与椭圆交于两点,与圆交于两点,若的面积为, ,求正数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知, 是两条不同直线, , 是两个不同平面,则下列命题正确的是( )
A. 若, 垂直于同一平面,则与平行
B. 若, 平行于同一平面,则与平行
C. 若, 不平行,则在内不存在与平行的直线
D. 若, 不平行,则与不可能垂直于同一平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B、C为△ABC的三个内角,且其对边分别为a、b、c,若cosBcosC﹣sinBsinC= .
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线: (为给定的正常数, 为参数, )构成的集合为,给出下列命题:
①当时, 中直线的斜率为;
②中的所有直线可覆盖整个坐标平面.
③当时,存在某个定点,该定点到中的所有直线的距离均相等;
④当时, 中的两条平行直线间的距离的最小值为;
其中正确的是__________(写出所有正确命题的编号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面为平行四边形, , , , 点在底面内的射影在线段上,且, , 为的中点, 在线段上,且.
(Ⅰ)当时,证明:平面平面;
(Ⅱ)当平面与平面所成的二面角的正弦值为时,求四棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com