精英家教网 > 高中数学 > 题目详情

已知椭圆C1:数学公式+数学公式=1(a>b>0)的离心率为数学公式,x轴被抛物线C2:y=x2-b截得的线段长等于C1的长半轴长.
(1)求C1,C2的方程;
(2)设C2与y轴的交点为M,过坐标原点O的直线l:y=kx与C2相交于A,B两点,直线MA,MB分别与C1相交于D,E.
①证明:数学公式数学公式为定值;
②记△MDE的面积为S,试把S表示成k的函数,并求S的最大值.

解:(1)由已知
又a2=b2+c2,可解得a=2b ①
在y=x2-b中,令y=0,得

由①②得,a=2,b=1

(2)①证明:由得x2-kx-1=0
设A(x1,y1),B(x2,y2),
∴x1+x2=k,x1x2=-1
∵M(0,-1),
=x1x2+(y1+1)(y2+1)=
∴MA⊥MB
∴MD⊥ME
=0
②解:设A(x1,kx1),B(x2,kx2
∵A在y=x2-1上,

即∴

∴直线AM方程为:y=x1x-1代入,得
,同理



在t∈[2,+∞)时,u为增函数,
,此时t=2
∴k=0时,
分析:(1)由已知,根据a2=b2+c2,可得a=2b,又x轴被抛物线C2:y=x2-b截得的线段长等于C1的长半轴长.
,从而可求得a=2,b=1,故可求C1,C2的方程;
(2)①由得x2-kx-1=0,从而可证明MA⊥MB,所以MD⊥ME,故=0
②设A(x1,kx1),B(x2,kx2),可求得直线AM、BM的方程,分别代入,从而求得D,E的坐标,进而可得面积,令,从而,借助于函数的单调性可求S的最大值.
点评:本题以椭圆的性质为载体,考查曲线方程的求解,考查利用向量的知识证明向量的垂直,同时考查函数最值的求法,应注意基本不等式的使用条件,否则会做错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1=1,抛物线C2:(y-m)2=2px(p>0),且C1C2的公共弦AB过椭圆C1的右焦点.

(1)当ABx轴时,求mp的值,并判断抛物线C2的焦点是否在直线AB上;

(2)若p=且抛物线C2的焦点在直线AB上,求m的值及直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市慈溪中学高三(上)第一次月考数学试卷(文科)(解析版) 题型:选择题

已知椭圆C1=1 (a>b>0)与双曲线C2:x2-=1 有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则( )
A.a2=
B.a2=3
C.b2=
D.b2=2

查看答案和解析>>

科目:高中数学 来源:2011-2012学年辽宁省本溪一中、庄河高中联考高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知椭圆C1+=1(a>b>0)的长轴长为4,离心率为,F1、F2分别为其左右焦点.一动圆过点F2,且与直线x=-1相切.
(Ⅰ)(ⅰ)求椭圆C1的方程; (ⅱ)求动圆圆心C轨迹的方程;
(Ⅱ)在曲线上C有两点M、N,椭圆C1上有两点P、Q,满足MF2共线,共线,且=0,求四边形PMQN面积的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年吉林省长春十一高高二(下)期初数学试卷(理科)(解析版) 题型:解答题

已知椭圆C1=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且
(I)求椭圆C1的方程;   
(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x-7y+1=0上,求直线AC的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省中山一中等六校联考高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

已知椭圆C1+=1(a>b>0)的离心率为,直线l:x-y+=0与椭圆C1相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直与椭圆的长轴,动直线l2垂直于直线l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)若A(x1,2),B(x2,y2),C(x,y)是C2上不同的点,且AB⊥BC,求实数y的取值范围.

查看答案和解析>>

同步练习册答案