精英家教网 > 高中数学 > 题目详情
4.设f(x)=ax5+bx3+x2-1(a,b为常数),若f(-5)=2,则f(5)=46.

分析 利用f(-5)=2,可得a•55+b•53=21,即可计算f(5).

解答 解:∵f(x)=ax5+bx3+x2-1(a,b为常数),f(-5)=2,
∴-a•55-b•53=-22,
∴a•55+b•53=22,
∴f(5)=a•55+b•53+25-1=46.
故答案为:46.

点评 本题考查的知识点是函数奇偶性的性质,熟练掌握函数奇偶性的性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)的定义域为[0,1],求f(1-$\sqrt{3}$tanx)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设常数a≥0,函数$f(x)=\frac{{{2^x}-a}}{{{2^x}+a}}$
(1)讨论函数y=f(x)的单调性;
(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个动点由A点位移到B点,又由B点位移到C点,则动点的总位移是(  )
A.$\overrightarrow{AC}$B.$\overrightarrow{AB}$C.$\overrightarrow{BC}$D.$\overrightarrow{CA}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设y=arctan$\frac{x+1}{x-1}$,则$\frac{dy}{dx}$=-$\frac{1}{1+{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对于给定的正数K,定义函数fK(x)=$\left\{\begin{array}{l}{f(x),f(x)≤K}\\{K,f(x)>K}\end{array}\right.$,已知函数f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}-2x}$(0≤x<3),对其定义域内的任意x,恒有fK(x)=f(x),则(  )
A.K上最小值为$\frac{1}{27}$B.K的最小值为3C.K的最大值为$\frac{1}{27}$D.K的最大值为3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数y=f(x)是奇函数,且在[0,+∞)上是增函数.设θ∈(0,2π),求满足不等式f(sinθ(cosθ-$\frac{\sqrt{3}}{2}$))<0的θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上的奇函数f(x)满足f(x+1)=f(-x),当x∈(0,$\frac{1}{2}$]时,f(x)=log2(x+1),则f(x)在区间(-1,-$\frac{1}{2}$)内是(  )
A.减函数且f(x)<0B.减函数且f(x)>0C.增函数且f(x)0D.增函数且f(x)<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={1,2,3,4},则满足条件{1}?B⊆A的集合B的个数有7个.

查看答案和解析>>

同步练习册答案