精英家教网 > 高中数学 > 题目详情

已知点动点P满足.
(Ⅰ)若点的轨迹为曲线,求此曲线的方程;
(Ⅱ)若点在直线上,直线经过点且与曲线有且只有一个公共点,求的最小值.

(Ⅰ) ;(Ⅱ)

解析试题分析:(Ⅰ)本题属直接法求轨迹方程,即根据题意列出方程,化简整理即可。(Ⅱ)圆的圆心为半径为,因为直线与圆相切,所以,所以当最小时取得最小值。由分析可知当
试题解析:解:(Ⅰ)设,由|PA|=|PB|得
    2分
两边平方得     3分
整理得    5分
   6分
(Ⅱ)当.
,   8分
,    10分
 . 12分
考点:求轨迹方程,点到直线的距离,直线与圆的位置关系。考查数形结合思想、转化思想。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,点A(0,3),直线ly=2x-4.设圆C的半径为1,圆心在l上.
 
(1)若圆心C也在直线yx-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线,过上一点A作,使得,边AB过圆心M,且B,C在圆M上,求点A纵坐标的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C和轴相切,圆心C在直线上,且被直线截得的弦长为,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知圆心在轴上,半径为的圆位于轴的右侧,且与轴相切,
(Ⅰ)求圆的方程;
(Ⅱ)若椭圆的离心率为,且左右焦点为,试探究在圆上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,点是坐标原点.直线与圆交于两点.
(1)求的取值范围;
(2)设是线段上的点,且.请将表示为的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点和圆

(Ⅰ)过点的直线被圆所截得的弦长为,求直线的方程;
(Ⅱ)试探究是否存在这样的点是圆内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEM的面积?若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知半径为的⊙轴交于两点,为⊙的切线,切点为,且在第一象限,圆心的坐标为,二次函数的图象经过两点.

(1)求二次函数的解析式;
(2)求切线的函数解析式;
(3)线段上是否存在一点,使得以为顶点的三角形与相似.若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线与圆交于两点,记△的面积为(其中为坐标原点).
(1)当时,求的最大值;
(2)当时,求实数的值.

查看答案和解析>>

同步练习册答案