精英家教网 > 高中数学 > 题目详情
已知
a
b
c
分别为直线a、b、c的方向向量,且
a
b
(λ≠0),
b
c
=0,则a与c的位置关系是
 
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:运用已知求得
a
c
,再由向量垂直的条件,即可判断直线a,c的位置关系.
解答: 解:由于
a
b
(λ≠0),
b
c
=0,
a
c
=(λ
b
c

=λ(
b
c
)=0,
即有
a
c

则直线a与直线c垂直.
故答案为:垂直.
点评:本题考查平面向量的垂直的条件,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面内动点P(x,y)到定点F(1,0)的距离比它到y轴的距离大l.
(1)求动点P的轨迹ABCD的方程;
(2)已知点A(3,2),求|PA|+|PF|的最小值及此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,若不等式
m
3a+b
-
3
a
-
1
b
≤0恒成立,则m的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-3,2)在抛物线C:y2=2px(p>0)的准线上,过点P的直线与抛物线C相切于A,B两点,则直线AB的斜率为(  )
A、1
B、
2
C、
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,这个二次函数的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(0,1),B(1,0),若直线y=k(x+1)与线段AB总有公共点,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设-3π<α<-
5
2
π,化简
1-cos(α-π)
2
的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图,在棱长为1的正方体ABCD-A1B1C1D1中,M是A1B上的点,A1M=
1
3
A1B,N是B1D1上的点,B1N=
1
3
B1D1
(I) 求证:直线MN是异面直线A1B与B1D1的公垂线;
(Ⅱ) 求直线MN与平面ABCD所成角的正弦值.

查看答案和解析>>

同步练习册答案