精英家教网 > 高中数学 > 题目详情
如图2-2-8,在等腰三角形ABC中,AB =AC,DAC中点,DE平分∠ADB,交ABE,过ADE的圆交BDN.求证:BN =2AE.

图2-2-8

思路分析:要证BN =2AE,由已知有AB=AC =2AD,所以只需证=.而又因为AE =NE,所以只需证=,这可由△BNE∽△BAD证得.

证明:连结EN,∵四边形AEND是圆内接四边形,?

∴∠BNE =∠A.?

又∵∠ABD =∠EBN,∴△BNE∽△BAD.?

=.?

AB =AC,AC =2AD,∴AB =2AD.?

BN =2EN.?

又∵∠ADE =∠NDE,∴AE =EN,?

AE =EN,∴BN =2AE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,BD=4
3
,AB=2CD=8.
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)当M点位于线段PC什么位置时,PA∥平面MBD?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).
(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);
(2)在灯笼内,以矩形骨架的顶点为点,安装一些霓虹灯,当灯笼的底面半径为0.3米时,求图中两根直线A1B3与A3B5所在异面直线所成角的大小(结果用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

有一海湾,海岸线为近似半个椭圆(如图),椭圆长轴端点为A,B,AB间距离为3km,椭圆焦点为C,D,CD间距离为2km,在C,D处分别有甲,乙两个油井,现准备在海岸线上建一度假村P,不考虑风向等因素影响,油井对度假村废气污染程度与排出废气的浓度成正比(比例系数都为k1),与距离的平方成反比(比例系数都为k2),又知甲油井排出的废气浓度是乙的8倍.
(1)设乙油井排出的浓度为a(a为常数)度假村P距离甲油井xkm,度假村P受到甲乙两油井的污染程度和记为f(x),求f(x)的表达式并求定义域;
(2)度假村P距离甲油井多少时,甲乙两油井对度假村的废气污染程度和最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)如图,边长为2的正方形内有一个半径为1的半圆.向正方形内任投一点(假设该点落在正方形内的每一点都是等可能的),则该点落在半圆内的概率为
π
8
π
8

查看答案和解析>>

科目:高中数学 来源:2013届新课标高三配套第四次月考文科数学试卷(解析版) 题型:解答题

如图6所示,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.

图6

(1)求抛物线E的方程;

(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.

 

查看答案和解析>>

同步练习册答案