【题目】设函数f(x+1)的定义域为[﹣1,0],则函数f( ﹣2)的定义域为 .
【答案】[4,9]
【解析】解:∵函数f(x+1)的定义域为[﹣1,0],即﹣1≤x≤0,
∴0≤x+1≤1,即函数f(x)的定义域为[0,1],
由0 ,解得4≤x≤9,
∴函数f( ﹣2)的定义域为[4,9].
所以答案是:[4,9].
【考点精析】利用函数的定义域及其求法对题目进行判断即可得到答案,需要熟知求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.
科目:高中数学 来源: 题型:
【题目】过双曲线 =1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为坐标原点,若 = ( + ),则双曲线的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校为了了解、两个班级学生在本学期前两个月内观看电视节目的时长,分别从这两个班级中随机抽取10名学生进行调查,得到他们观看电视节目的时长分别为(单位:小时):
班:5、5、7、8、9、11、14、20、22、31;
班:3、9、11、12、21、25、26、30、31、35.
将上述数据作为样本.
(Ⅰ)绘制茎叶图,并从所绘制的茎叶图中提取样本数据信息(至少写出2条);
(Ⅱ)分别求样本中、两个班级学生的平均观看时长,并估计哪个班级的学生平均观看的时间较长;
(Ⅲ)从班的样本数据中随机抽取一个不超过11的数据记为,从班的样本数据中随机抽取一个不超过11的数据记为,求的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,当n>4时,f(n)= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=x3﹣ x2+bx+c在x=1时取得极值,且当x∈[﹣1,2]时,f(x)<c2恒成立.
(1)求实数b的值;
(2)求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|2a≤x<a+3},B={x|x<﹣1或x>5}.
(1)若a=﹣1,求A∪B,(RA)∩B.
(2)若A∩B=,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com