精英家教网 > 高中数学 > 题目详情
8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{b}$=(-$\sqrt{3}$,1),$\overrightarrow{b}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=-3,向量$\overrightarrow{a}$为单位向量,则向量$\overrightarrow{b}$在向量$\overrightarrow{a}$方向上的投影为1.

分析 属性求出向量$\overrightarrow{b}$的模,以及向量$\overrightarrow{a}$,$\overrightarrow{b}$的数量积,根据数量积公式求投影.

解答 解:因为$\overrightarrow{b}$=(-$\sqrt{3}$,1),
所以|$\overrightarrow{b}$|=2,$\overrightarrow{b}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=$\overrightarrow{a}•\overrightarrow{b}-{\overrightarrow{b}}^{2}$=-3,所以$\overrightarrow{a}•\overrightarrow{b}$=1,
向量$\overrightarrow{a}$为单位向量,则向量$\overrightarrow{b}$在向量$\overrightarrow{a}$方向上的投影为$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|}$=1;
故答案为:1.

点评 本题考查了平面向量的数量积以及投影的求法;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.当x=1时,函数f(x)=x3-x2-x-1取得极小值,极小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知各项均为正数的数列{an}的前n项和为Sn,满足$a_{n+1}^2=2{S_n}+n+4,且{a_2}-1,{a_3},{a_7}$恰为等比数列{bn}的前3项.
(1)求数列{an},{bn}的通项公式;
(2)若${c_n}={b_n}+\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知定义域为R的函数f(x)=$\frac{b-{2}^{-x}}{{2}^{-x+1}+2}$是奇函数.
(1)求b的值;
(2)判断并证明函数f(x)的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数列{an}满足anan+1-an+1=-1,a2016=-1,则a361等于(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=(  )
A.35B.50C.62D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知x$<\frac{5}{4}$,求函数y=4x-2+$\frac{1}{4x-5}$的最大值.
(2)已知a≤1且a≠0,解关于x的二次不等式ax2-2x-2ax+4>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,A,B,C,D是海上的四个小岛,要建三座桥,将这四个岛连接起来,则不同的建桥方案共有(  )
A.48种B.32种C.24种D.16种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=1+lnx-$\frac{(x-1)k}{x}$.
(1)讨论函数f(x)的单调性;
(2)若x>1时,f(x)>0恒成立,求整数k的最大值.

查看答案和解析>>

同步练习册答案