精英家教网 > 高中数学 > 题目详情

【题目】对于任意实数a,b,c,d,以下四个命题中的真命题是(
A.若a>b,c≠0则ac>bc
B.若a>b>o,c>d则ac>bd
C.若a>b,则
D.若ac2>bc2则a>b

【答案】D
【解析】解:对于A,c>0时,结论成立,c<0时,结论不成立,故A为假命题; 对于B,c>d>0时,结论成立,0>c>d时,结论不成立,故B为假命题;
对于C,a=1,b=﹣1,结论不成立,故C为假命题;
对于D,∵c2>0,若ac2>bc2则a>b,故D为真命题;
故选D.
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图(1)五边形中,

,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.

(1)求证:平面平面

(2)若四棱柱的体积为,求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集为R,集合A={x||x|≤2},B={x| >0},则A∩RB=(
A.[﹣2,1)
B.[﹣2,1]
C.[﹣2,2]
D.[﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,讨论的单调性;

(2)若,证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P﹣ABC中,PO⊥面ABC,垂足为O,若PA⊥BC,PC⊥AB,求证:
(1)AO⊥BC
(2)PB⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,则这个椭圆的离心率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足: .

(1)求数列的通项公式;

(2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过左焦点F且垂直于x轴的直线与椭圆相交,所得弦长为1,斜率为 ()的直线过点,且与椭圆相交于不同的两点. 

(Ⅰ)求椭圆的方程;

(Ⅱ)在轴上是否存在点,使得无论取何值, 为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装厂生产一种服装,每件服装的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过500件.
(1)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;
(2)当销售商一次订购多少件服装时,该服装厂获得的利润最大?并求出最大值.

查看答案和解析>>

同步练习册答案