精英家教网 > 高中数学 > 题目详情
(2012•泉州模拟)函数的图象与方程的曲线有着密切的联系,如把抛物线y2=x的图象绕原点沿逆时针方向旋转90°就得到函数y=x2的图象.若把双曲线
x2
3
-y2=1
绕原点按逆时针方向旋转一定角度θ后,能得到某一个函数的图象,则旋转角θ可以是(  )
分析:确定双曲线的渐近线方程,求出倾斜角,即可得到结论.
解答:解:双曲线
x2
3
-y2=1
的渐近线方程为y=±
3
3
x
,其倾斜角为30°或150°
在双曲线
x2
3
-y2=1
上取点(m,n),关于y=
3
3
x
对称点的坐标为(x,y),则
y-n
x-m
=-
3
n+y
2
=
3
3
×
m+x
2
,∴
m=
3
y
2
+
x
2
n=
3
x
2
-
y
2

m2
3
-n2=1
,∴y=
3
2x
此时,是一个函数的图象
故把双曲线
x2
3
-y2=1
绕原点按逆时针方向旋转60°时,双曲线方程为y=
3
2x
,双曲线的渐近线方程为x=0,与y=
3
3
x
,图象如图所示
故选C.
点评:本题考查双曲线的标准方程与性质,考查图象变换,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
(Ⅰ)请写出fn(x)的表达式(不需证明);
(Ⅱ)设fn(x)的极小值点为Pn(xn,yn),求yn
(Ⅲ)设gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值为a,fn(x)的最小值为b,试求a-b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)下列函数中,既是偶函数,且在区间(0,+∞)内是单调递增的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知集合A={1,2,3},B={x|x2-x-2=0,x∈R},则A∩B为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)设函数f(x)=ax2+lnx.
(Ⅰ)当a=-1时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-
12
的下方,求a的取值范围;
(Ⅲ)记f′(x)为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1,x2,x3…xk,使得f′(x1)+f'(x2)+f′(x3)+…+f′(xk)≥2012成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)设函数y=f(x)的定义域为D,若对于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究并利用函数f(x)=x3-3x2-sin(πx)的对称中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=(  )

查看答案和解析>>

同步练习册答案