精英家教网 > 高中数学 > 题目详情

【题目】已知 .

(1)讨论函数的单调性;

(2)记,设 为函数图象上的两点,且.

(i)当时,若 处的切线相互垂直,求证:

(ii)若在点 处的切线重合,求的取值范围.

【答案】(1)见解析(2)

【解析】试题分析:(1)先求函数导数,转化为研究导函数零点,即方程=0的根的情况,当,导函数不变号,在上单调递减,当时,有两个不等根,列表分析导函数符号变化规律,确定对应单调区间,(2)(i)利用导数几何意义化简条件: 处的切线相互垂直,得,利用基本不等式证明不等式,(ii)先分别求出切线方程,再根据切线重合得,消元,利用导数研究函数 单调性,确定函数值域,进而确定的取值范围.

试题解析:解:(1),则

时, 上单调递减,

时即时,

此时上都是单调递减的,在上是单调递增的;

(2)(i),据题意有,又

法1:

当且仅当 时取等号.

法2:

当且仅当时取等号.

(ii)要在点处的切线重合,首先需要在点处的切线的斜率相等,

时, ,则必有,即

处的切线方程是:

处的切线方程是:

据题意则

上恒成立,

上单调递增

上单调递增,

,再设

上单调递增,

恒成立,

即当时, 的值域是

,即为所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别是a、b、c满足:cosAcosC+sinAsinC+cosB= ,且a,b,c成等比数列,
(1)求角B的大小;
(2)若 + = ,a=2,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是(
A.a=7,b=14,A=30°,有两解
B.a=30,b=25,A=150°,有一解
C.a=6,b=9,A=45°,有两解
D.a=9,b=10,A=60°,无解

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求曲线在点处的切线方程;

(2)设,若对任意的,存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10y1(2)x02(3),求数字xy的值及与此两数等值的十进制数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a<0,解关于x的不等式ax2+(1﹣a)x﹣1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数),函数为自然对数的底).

(1)讨论函数的极值点的个数;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1= ,an= (n≥2,n∈N).
(1)试判断数列 是否为等比数列,并说明理由;
(2)设bn= ,求数列{bn}的前n项和Sn
(3)设cn=ansin ,数列{cn}的前n项和为Tn . 求证:对任意的n∈N* , Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,为前天两只老鼠打洞之和,则_________________尺.

查看答案和解析>>

同步练习册答案