精英家教网 > 高中数学 > 题目详情
在区间[-2,1]上随机取一个数,则该数是正数的概率是(  )
A、
1
5
B、
1
4
C、
1
3
D、
1
2
考点:几何概型
专题:计算题,概率与统计
分析:根据几何概型公式,将符合题意的区间长度除以总的区间长度,即得本题的概率.
解答: 解:记事件A=“该数为正数”,
∵区间[-2,1]长度是3,该数为正数的取值区间长度是1,
∴由几何概型公式,得P(A)=
1
3

故选:C.
点评:本题主要考查了几何概型和概率的意义等知识,解题的关键是利用几何概型公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|
x-1
x+2
1
2
}
,集合B={x||x-1|≤4},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x
2x+1
+a是奇函数.
(1)求实数a和f(-2)的值;
(2)判断f(x)在其定义域上的单调性,并用函数单调性的定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:函数f(x)=(3-a)x为增函数,命题q:函数f(x)=|x|+a无零点
(1)若p∧q为真命题,求实数a的取值范围.
(2)若(¬p)∧q为真命题,判断p∨(¬q)的真假,并求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AB=AC=BC=6,平面内一点M满足
BM
=
2
3
BC
-
1
3
BA
,则
AC
MB
等于(  )
A、-9B、-18C、12D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,求:
(Ⅰ)
2sinα+cosα
sinα-cosα

(Ⅱ)2sinαcosα+cos2α+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD中,底面ABCD为直角梯形,BC∥AD,∠BAD=90°,且PA=AB=BC=1,AD=2,PA⊥平面ABCD,E为AB的中点.
(I)证明:PC⊥CD;
(II)在线段PA上是否存在一点F,使EF∥平面PCD,若存在,求
AF
FP
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每一个学生一学期数学成绩的平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名,现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
39181569
64510132
(1)估计男女生各自的成绩平均数(同一组数据用该区间中点值作代表),从计算结果看,判断数学成绩与性别是否有关.
(2)规定80分以上为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.
优分非优分合计
男生   
女生   
合计  100
附表及公式
P(k2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式3x2+2ax+b≤0在区间[-1,0]上恒成立,则a2+b2-1的取值范围是(  )
A、[
9
4
,+∞)
B、(-1,
9
4
]
C、[
4
5
,+∞)
D、(-1,
4
5
]

查看答案和解析>>

同步练习册答案