精英家教网 > 高中数学 > 题目详情
5.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(II)直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),α为直线l的倾斜角,l与C交于A,B两点,且|AB|=$\sqrt{10}$,求l的斜率.

分析 (Ⅰ)由x=ρcosθ,y=ρsinθ,ρ2=x2+y2,能求出C的极坐标方程.
(Ⅱ)直线l的极坐标方程为θ=α(ρ∈R),设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程代入C的极坐标方程得ρ2+12ρcosα+11=0,由此利用|AB|=$\sqrt{10}$,能求出l的斜率.

解答 解:(Ⅰ)∵在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25,
∴x2+y2+12x+11=0,
以坐标原点为极点,x轴正半轴为极轴建立极坐标系,
x=ρcosθ,y=ρsinθ,ρ2=x2+y2
∴C的极坐标方程为ρ2+12ρcosθ+11=0.
(Ⅱ)∵直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),α为直线l的倾斜角,
∴直线l的极坐标方程为θ=α(ρ∈R),
设A,B所对应的极径分别为ρ1,ρ2
将l的极坐标方程代入C的极坐标方程代入C的极坐标方程得ρ2+12ρcosα+11=0,
∴ρ12=-12cosα,ρ1ρ2=11,
|AB|=|ρ12|=$\sqrt{({ρ}_{1}+{ρ}_{2})^{2}-4{ρ}_{1}{ρ}_{2}}$=$\sqrt{144co{s}^{2}α-44}$,
由|AB|=$\sqrt{10}$,得cos2$α=\frac{3}{8}$,tanα=±$\frac{\sqrt{15}}{3}$,
∴l的斜率为$\frac{\sqrt{15}}{3}$或-$\frac{\sqrt{15}}{3}$.

点评 本题考查圆的极坐标方程的求法,考查直线的斜率的求法,是中档题,解题要认真审题,注意点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,椭圆C的四个顶点围成的四边形的面积为4$\sqrt{3}$.
(1)求椭圆C的方程;
(2)直线l与椭圆C交于P(x1,y1),Q(x2,y2)两个不同点,O为坐标原点,若△OPQ的面积为$\sqrt{3}$,证明:y12+y22为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.椭圆7x2+3y2=21上一点到两个焦点的距离之和为2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$<1”的否定是(  )
A.?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$>1B.?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$≥1
C.?x∈R,x2+sinx+ex>1D.?x∈R,x2+sinx+ex≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,已知四边形ABCD是圆内接四边形,且∠BCD=120°,AD=2,AB=BC=1,现有以下结论:①B,D两点间的距离为$\sqrt{3}$;②AD是该圆的一条直径;③CD=$\frac{\sqrt{3}}{2}$;④四边形ABCD的面积S=$\frac{3\sqrt{3}}{4}$.其中正确结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线x-y=0的斜率是(  )
A.1B.-1C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在棱长均为2的正三棱柱ABC-A1B1C1中,点M是侧棱AA1的中点,点P是侧面BCC1B1内的动点,且A1P∥平面BCM,则点P的轨迹的长度为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,PA⊥平面ABC,AB⊥BC,AB=PA=2BC=2,M为PB的中点.
(Ⅰ)求证:AM⊥平面PBC;
(Ⅱ)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的奇函数f(x)满足f(x+1)=-f(x),当x∈(0,1)时,f(x)=cos($\frac{π}{2}$x+$\frac{π}{2}$),则函数y=f(x)-log4|x|的零点个数是(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案