精英家教网 > 高中数学 > 题目详情
若双曲线的一条渐近线方程为y=
1
2
x,且双曲线经过点(2
2
,1),则双曲线的标准方程为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据双曲线的渐近线方程与双曲线的方程的关系,可设双曲线的方程为y2-
1
4
x2=λ(λ≠0),代入点的坐标即可得到双曲线方程.
解答: 解:由于双曲线的一条渐近线方程为y=
1
2
x,
则可设双曲线的方程为y2-
1
4
x2=λ(λ≠0),
由于双曲线经过点(2
2
,1),
则λ=1-
1
4
×8=-1,
则双曲线的方程为
x2
4
-y2
=1.
故答案为:
x2
4
-y2
=1.
点评:本题考查双曲线的方程的求法,考查双曲线的渐近线方程和双曲线的方程的关系,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率是
1
2
,其左、右顶点分别为A1,A2,B为短轴的一个端点,△A1BA2的面积为2
3

(1)求椭圆C的标准方程;
(2)直线l:x=2
2
与x轴交于点D,点P是椭圆C上异于A1,A2的动点,直线A1P,A2P分别交直线l于E,F两点,证明:|DE|•|DE|恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题:若a>c,b>c,则a+b>2c.写出该命题的逆,否命题并判断真假.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点,直线x=-
a2
c
与x轴相交于点N,并且满足
F1F2
=2
NF1
,|
F1F2
|=2,设A,B是上半椭圆上满足
NA
NB
,其中λ∈[
1
5
1
3
].
(1)求此椭圆的方程及直线AB的斜率的取值范围;
(2)过A,B两点分别作此椭圆的切线,两切线相交于一点P,求证:点P在一条定直线上,并求点P的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,过定点C(p,0)作直线与抛物线y2=2px(p>0)相交于A、B两点
(I)设N(-p,0),求
NA
NB
+1
的最小值;
(II)是否存在垂直于x轴的直线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲,乙,丙三人到三个景点旅游,每个人只去一个景点,设事件A为“三个人去的景点不相同”,事件B为“甲独自去一个景点”,则概率P(A|B)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ax3+bx2+x+3,其中a≠0.
(1)当实数a,b满足什么条件时,函数f(x)存在极值?
(2)若a=1,函数f(x)在区间(0,1]上是增加的,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设过直线l的平面α截球的截面圆的半径为
3
,球心到截面圆的圆心距离为5,则球O的表面积为(  )
A、4πB、16π
C、28πD、112π

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+1(a,b为常数,且a>0),f(-1)=0,且对任意实数x均有f(x)≥0.
(1)求函数f(x)的表达式;
(2)若g(x)=f(x)-kx(x∈[-2,2])是单调函数,求实数k的取值范围.

查看答案和解析>>

同步练习册答案