【题目】定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),恒有f(kx)=kf(x),(k≥2,k∈N+)成立,则称f(x)为k阶缩放函数.
(1)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)=1+ x,求f(2 )的值;
(2)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)= ,求证:函数y=f(x)﹣x在(1,+∞)上无零点;
(3)已知函数f(x)为k阶缩放函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范围.
【答案】
(1)解:由 ∈(1,2]得,f( )=1+1+ =
由题中条件得f(2 )=2f( )=2× =1
(2)解:当x∈(2i,2i+1](i=0,1,2)时, ∈(1,2],依题意可得:f(x)=2f( )=22f( )=…=2if( )=2i =
方程f(x)﹣x=0 =xx=0或x=2i,0与2i均不属于(2i,2i+1]((i=0,1,2))当x∈(2i,2i+1]((i=0,1,2))时,方程f(x)﹣x=0无实数解.
注意到(1,+∞)=(20,21]∪(21,22]∪(22,23)∪…,所以函数y=f(x)﹣x在(1,+∞)上无零点
(3)解:当x∈(kj,kj+1],j∈Z时,有 ∈(1,k],依题意可得:f(x)=kf( )=k2f( )=…=kjf( )
当x∈(1,k]时,f(x)的取值范围是[0,1)
所以当x∈(kj,kj+1],j∈Z时,f(x)的取值范围是[0,kj).
由于(0,kn+1]=(kn,kn+1]∪(kn﹣1,kn]∪…∪(k0,k]∪(k﹣1,k0]∪
所以函数f(x)在(0,kn+1](n∈N)上的取值范围是:[0,kn)∪[0,kn﹣1)∪…∪[0,k0)∪[0,k﹣1)∪…=[0,kn)
【解析】(1)根据二阶缩放函数的定义,直接代入进行求值即可;(2)根据函数零点的定义和性质判断函数y=f(x)﹣x在(1,+∞)上无零点;(3)根据k阶缩放函数成立的条件建立条件关系即可求出结论.
科目:高中数学 来源: 题型:
【题目】已知圆C:.
(1)若圆C的切线在x轴和y轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆C外一点P向该圆引一条切线,切点为M,O为坐标原点,且有,
求使得取得最小值的点P的坐标
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一次函数是上的减函数,,且 f [ f(x)]=16x-3.
(1)求;
(2)若在(-2,3)单调递增,求实数的取值范围;
(3)当时,有最大值1,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明你的结论;
(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆 ,点P在圆外,过点P作圆C的两条切线,切点分别为T1 , T2 .
(1)若 ,求点P的轨迹方程;
(2)设 ,点P在平面上构成的图形为M,求M的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资类产品的收益与投资额成正比,投资类产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.
(1)分别写出两类产品的收益与投资额的函数关系;
(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com