精英家教网 > 高中数学 > 题目详情

已知抛物线C:与椭圆共焦点,

(Ⅰ)求的值和抛物线C的准线方程;

(Ⅱ)若P为抛物线C上位于轴下方的一点,直线是抛物线C在点P处的切线,问是否存在平行于的直线与抛物线C交于不同的两点A,B,且使?若存在,求出直线的方程;若不存在,请说明理由.

 

【答案】

(Ⅰ);(Ⅱ)不存在满足条件的直线.

【解析】

试题分析:(Ⅰ)因为抛物线C:与椭圆共焦点,

所以抛物线C:的焦点为(1,0)       (1分)

所以                                  (3分)

抛物线C的准线方程为                        (4分)

(Ⅱ)由(Ⅰ)知抛物线C:

因为 P为抛物线C上位于轴下方的一点,

所以点P满足 ,                  

所以点处的切线的斜率为 

所以平行于的直线方程可设为             (6分)

解方程组,消去得:,(7分)

因为直线与抛物线C交于不同的两点A,B,

所以, (8分)

,则

, (10分)

所以线段AB的中点为

线段AB的中垂线方程为    (12分)

知点P在线段AB的中垂线上

所以   ,               (13分)

代人上式得 ,(14分)

,所以无解.

从而不存在满足条件的直线.                            (15分)

考点:椭圆、抛物线的几何性质,直线与抛物线的位置关系,简单不等式解法。

点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求抛物线准线方程时,主要运用了椭圆、抛物线的定义及几何性质。(2)作为研究直线与抛物线相交时弦长的范围问题,应用韦达定理,建立了k的不等式,进一步使问题得解。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=8x与椭圆
x2
a2
+
y2
b2
=1有公共焦点F,且椭圆过点D(-
2
3
).
(1)求椭圆方程;
(2)点A、B是椭圆的上下顶点,点C为右顶点,记过点A、B、C的圆为⊙M,过点D作⊙M的切线l,求直线l的方程;
(3)过点A作互相垂直的两条直线分别交椭圆于点P、Q,则直线PQ是否经过定点,若是,求出该点坐标,若不经过,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=8x与椭圆
x2
a2
+
y2
b2
=1
有公共焦点F,且椭圆过点D(-
2
3
).
(1)求椭圆方程;
(2)点A、B是椭圆的上下顶点,点C为右顶点,记过点A、B、C的圆为⊙M,过点D作⊙M的切线l,求直线l的方程;
(3)过点A作互相垂直的两条直线分别交椭圆于点P、Q,则直线PQ是否经过定点,若是,求出该点坐标,若不经过,说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届浙江省高三上学期入学摸底文科数学试卷(解析版) 题型:选择题

已知抛物线的焦点与椭圆的一个焦点重合,它们在第一象限内的交点为,且轴垂直,则椭圆的离心率为(    )

A.        B.        C.      D.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三最后压轴卷理科数学试卷(解析版) 题型:选择题

已知抛物线的焦点与椭圆的一个焦点重合,它们在第一象限内的交点为,且轴垂直,则椭圆的离心率为(   )

A.          B.           C.           D.

 

查看答案和解析>>

同步练习册答案