【题目】已知函数,.
(1)证明:当时,;
(2)若时不等式成立,求的取值范围.
【答案】(1)见解析(2)
【解析】
(1)构造函数求导分析单调性证明即可.
(2)构造函数,求导后根据区间端点和极值点的大小关系等分参数的范围进行分析最大值即可.
解:(1)令 ,
,
所以当时,单调递减.
当时,单调递减.
当时,取得最大值,
,
即,
当时,.
(2)令,则,
①当时,,所以函数在上单调递减,
所以,所以满足题意.
②当时,令,得,
所以当时, ,当时,.
所以函数在上单调递增,在上单调递减.
(ⅰ)当,即时,在上单调递增,
所以,所以,此时无解.
(ⅱ)当,即时,函数在上单调递增,在上单调递减.
所以 .
设 ,则,
所以在上单调递增,
,不满足题意.
(ⅲ)当,即时,在上单调递减,
所以,所以 满足题意.
综上所述:的取值范围为.
科目:高中数学 来源: 题型:
【题目】《九章算术》中《方田》章有弧田面积计算问题,计算术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积计算公式为:弧田面积(弦乘矢+矢乘矢),弧田是由圆弧(简称为弧田的弧)和以圆弧的端点为端点的线段(简称 (弧田的弦)围成的平面图形,公式中“弦”指的是弧田的弦长,“矢”等于弧田的弧所在圆的半径与圆心到弧田的弦的距离之差.现有一弧田,其弦长等于,其弧所在圆为圆,若用上述弧田面积计算公式计算得该弧田的面积为,则( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
消费次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收费比率 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
该公司注册的会员中没有消费超过5次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据
如下:
消费次数 | 1次 | 2次 | 3次 | 4次 | 5次 |
人数 | 60 | 20 | 10 | 5 | 5 |
假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率, 设该公司为一位会员服务的平均利润为元,求大于40的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在处的切线方程为.
(1)求函数的解析式;
(2)若关于的方程f(x)=kex(其中e为自然对数的底数)恰有两个不同的实根,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校将一次测试中高三年级学生的数学成绩统计如下表所示,在参加测试的学生中任取1人,其成绩不低于120分的概率为.
分数 | |||||||
频数 | 40 | 50 | 70 | 60 | 80 | 50 |
(1)求的值;
(2)若按照分层抽样的方法从成绩在、的学生中抽取6人,再从这6人中随机抽取2人进行错题分析,求这2人中至少有1人的分数在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图甲,AD,BC是等腰梯形CDEF的两条高,,点M是线段AE的中点,将该等腰梯形沿着两条高AD,BC折叠成如图乙所示的四棱锥P-ABCD(E,F重合,记为点P).
甲 乙
(1)求证:;
(2)求点M到平面BDP距离h.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com