精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线l的方程为x+y+3=0,以直角坐标系中x轴的正半轴为极轴的极坐标系中,圆M的极坐标方程为ρ=2sinθ. (Ⅰ)写出圆M的直角坐标方程及过点P(2,0)且平行于l的直线l1的参数方程;
(Ⅱ)设l1与圆M的两个交点为A,B,求 的值.

【答案】解:(Ⅰ)极坐标方程ρ=2sinθ两边同乘ρ,得ρ2=2ρsinθ 其中ρ2=x2+y2 , y=ρsinθ,x=ρcosθ
所以⊙M的直角坐标方程为x2+y2﹣2y=0…①
又直线x+y+3=0的倾斜角为
所以过点P(2,0)且平行于x+y+3=0的直线的参数方程为
,(t为参数)…②
直线的参数方程不唯一,只要正确给分
(Ⅱ)把(Ⅰ)中的②代入①整理得
设方程的两根为t1 , t2 , 则有
由参数t 的几何意义知PA+PB=t1+t2 , PA*PB=t1t2
所以
【解析】(Ⅰ)极坐标方程ρ=2sinθ两边同乘ρ,得ρ2=2ρsinθ,从而能求出⊙M的直角坐标方程,直线x+y+3=0的倾斜角为 ,由此能求出过点P(2,0)且平行于x+y+3=0的直线的参数方程.(Ⅱ)把直线的参数方程代入圆的直角坐标方程,得 ,由参数t 的几何意义能求出 的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于110cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+x2﹣xlna(a>0,a≠1).
(1)求函数f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)单调增区间;
(3)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然对数的底数),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是(
A.mα,nα,m∥β,n∥βα∥β
B.α∥β,mα,nβ,m∥n
C.m⊥α,m⊥nn∥α
D.m∥n,n⊥αm⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2wx﹣sin2(wx﹣ )(x∈R,w为常数且 <w<1),函数f(x)的图象关于直线x=π对称.
(I)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f( A)= .求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为 的正方形,AA1=3,E是AA1的中点,过C1作C1F⊥平面BDE与平面ABB1A1交于点F,则CF与平面ABCD所成角的正切值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p: ,命题q: ,则下列命题为真命题的是(
A.p∧q
B.(¬p)∧(﹣q)
C.p∧(¬q)
D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (I)求直方图中x的值;
(Ⅱ)如果年上缴税收不少于60万元的企业可申请政策优惠,若共抽取企业1200个,试估计有多少企业可以申请政策优惠;
(Ⅲ)从企业中任选4个,这4个企业年上缴税收少于20万元的个数记为X,求X的分布列和数学期望.(以直方图中的频率作为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线l的参数方程为 (t为参数,0<φ<π),曲线C的极坐标方程为ρcos2θ=8sinθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当φ变化时,求|AB|的最小值.

查看答案和解析>>

同步练习册答案