精英家教网 > 高中数学 > 题目详情
6.在△ABC中,“$\overrightarrow{AB}$•$\overrightarrow{BC}$>0”是“△ABC是钝角三角形的”充分不必要条件.

分析 利用平面向量的数量积运算法则化简已知的不等式,得到两向量的夹角为锐角,从而得到三角形的内角为钝角,即可得到三角形为钝角三角形;反过来,三角形ABC若为钝角三角形,可得B不一定为钝角,故原不等式不一定成立,可得前者是后者的充分不必要条件.

解答 解:∵$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,即|$\overrightarrow{AB}$|•|$\overrightarrow{BC}$|cosθ>0,
∴cosθ>0,且θ∈(0,π),
所以两个向量的夹角θ为锐角,
又两个向量的夹角θ为三角形的内角B的补角,
所以B为钝角,所以△ABC为钝角三角形,
反过来,△ABC为钝角三角形,不一定B为钝角,
则“$\overrightarrow{AB}$•$\overrightarrow{BC}$>0”是“△ABC为钝角三角形”的充分条件不必要条件.
故答案为:充分不必要.

点评 此题考查了三角形形状的判断,涉及的知识有平面向量的数量积运算,以及充分必要条件的证明,熟练掌握平面向量的数量积运算法则是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知角终边上一α点P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{5π}{2}-α)sin(\frac{9π}{2}-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,空间直角坐标系中由长方体ABCD-A′B′C′D′,AB=1,BC=2,AA′=2,E和F分别是棱DD′和BB′的中点.证明:CE∥A′F,并求它们之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量xOy(年入流量:一年内上游来水与库区降水之和(单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系;
 年入流量X 40<X<80 80≤X≤120X>120
 发电机最多可运行台数 1 2 3
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,分别求出安装1台、2台、3台发电机后,水电站所获年总利润的均值,最后确定安装多少台发电机最好?欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5.(1)求抛物线的方程;
(Ⅱ)已知K(m,0)(m∈R,m≠0)是x轴上一动点,O为坐标原点,过点K且倾斜角为$\frac{π}{4}$的一条直线l与抛物线相交于不同的P,Q两点,求$\frac{\overline{OP}•\overline{OQ}+4}{m}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知全集U=R,集合A={x|y=$\frac{1}{\sqrt{x-2}}$+lg(3-x)},集合B={x|x2+(2-a)x-2a<0}.
(1)求集合CA.
(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{2lnx-k}{{e}^{x}}$(其中k∈R,e=2.71828…是自然对数的底数),f′(x)为f(x)的导函数.
(1)当k=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若x∈[1,e]时,f′(x)=0都有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=2cos(2πx-$\frac{π}{6}$)+4的图象的对称中心的坐标是( $\frac{k}{2}$+$\frac{1}{3}$,4),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知复数z满足z2=-4,若z的虚部大于0,则z=2i.

查看答案和解析>>

同步练习册答案