精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g(x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(﹣1,0).
(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);
(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数 的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.

【答案】
(1)解:函数f(x)=ax2+bx+c的图象经过点(﹣1,0),

可得a﹣b+c=0,又a=1,b=2,

则f(x)=x2+2x+1,

由新定义可得g(x)=x为函数f(x)的一个承托函数


(2)解:假设存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,

且f(x)为函数 的一个承托函数.

即有x≤ax2+bx+c≤ x2+ 恒成立,

令x=1可得1≤a+b+c≤1,即为a+b+c=1,

即1﹣b=a+c,

又ax2+(b﹣1)x+c≥0恒成立,可得a>0,且(b﹣1)2﹣4ac≤0,

即为(a+c)2﹣4ac≤0,即有a=c;

又(a﹣ )x2+bx+c﹣ ≤0恒成立,

可得a< ,且b2﹣4(a﹣ )(c﹣ )≤0,

即有(1﹣2a)2﹣4(a﹣ 2≤0恒成立.

故存在常数a,b,c,且0<a=c< ,b=1﹣2a,

可取a=c= ,b= .满足题意


【解析】(1)由题意可得c=1,进而得到f(x),可取g(x)=x;(2)假设存在常数a,b,c满足题意,令x=1,可得a+b+c=1,再由二次不等式恒成立问题解法,运用判别式小于等于0,化简整理,即可判断存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,在(0,+∞)内为增函数的是(
A.y=sinx
B.y=x3﹣x
C.y=lnx﹣x
D.y=xex

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,g(x)=x2﹣2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为2的正方形ABCD所在平面与三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求证:AB∥平面CDE;
(2)求证:DE⊥平面ABE;
(3)求点A到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0;命题q:实数x满足x2﹣5x+6≤0
(1)若a=1,且q∧p为真,求实数x的取值范围;
(2)若p是q必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱锥V﹣ABCD中,底面ABCD是边长2为的正方形,其他四个侧面都是侧棱长为 的等腰三角形.
(1)求正四棱锥V﹣ABCD的体积.
(2)求二面角V﹣BC﹣A的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a1=1,又a1 , a2 , a5成公比不为1的等比数列. (Ⅰ)求数列{an}的公差;
(Ⅱ)设bn= ,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(4,﹣3),B(2,﹣1)和直线l:4x+3y﹣2=0.
(1)求在直角坐标平面内满足|PA|=|PB|的点P的方程;
(2)求在直角坐标平面内一点P满足|PA|=|PB|且点P到直线l的距离为2的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求证:f(x)>0.

查看答案和解析>>

同步练习册答案