精英家教网 > 高中数学 > 题目详情
11.将相同的正方体按如图所示的形状摆放,从上往下一次为第1层、第2层、第3层…则第5层正方体的个数是15.

分析 先设上往下各层的正方体数目组成数列{an},再观察图形得出:a2-a1=2,a3-a2=3…an-an-1=n.最后利用叠加法求出数列的通项公式,即可求出结论.

解答 解:设上往下各层的正方体数目组成数列{an}
由题得:a2-a1=2,
a3-a2=3

an-an-1=n.
把上面各式相加得:an-a1=2+3+4+…+n
所以an=a1+2+3+…+n=1+2+3+…+n,
所以第5层正方体的个数是1+2+3+4+5=15,
故答案为:15.

点评 本题主要考查的知识点是归纳推理,数列的应用问题.解决本题的关键在于观察出数列各项之间的关系,再结合叠加法求出数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.给出命题:
①在空间中,垂直于同一平面的两个平面平行;
②设l,m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α;
③已知α,β表示两个不同平面,m为平面α内的一条直线,“α⊥β”是“m⊥β”的充要条件;
④在三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在平面ABC内的射影是△ABC的垂心;
⑤a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一条平行.
其中,正确的命题是②④.(只填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=loga(x2-ax+2)在区间[0,1]上是单调减函数,则实数a的取值范围是(  )
A.[2,+∞)B.(0,1)C.[2,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a、b为实数,求证:$\frac{\sqrt{1+{a}^{2}}+\sqrt{1+{b}^{2}}}{2}$≥$\sqrt{1+(\frac{a+b}{2})^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.从混有5张假钞的20张百元钞票中任意抽取两张,将其中一张放到验钞机上检验发现是假钞,则两张都是假钞的概率是$\frac{2}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,由f(1)=1>$\frac{1}{2}$,f(3)>1,f(7)>$\frac{3}{2}$,f(15)>2,…
(1)你能得到怎样的结论?并证明;
(2)是否存在正数T,使对任意的正整数n,有f(n)<T成立?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图1,已知矩形ABCD中,AB=2,AD=2$\sqrt{2}$,E,F分别是AD,BC的中点,对角线BD与EF交于O点,沿EF将矩形ABFE折起,使平面ABFE与平面EFCD所成角为60°.在图2中:
(1)求证:BO⊥DO;
(2)求平面DOB与平面BFC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.1-$\frac{1}{2}$=$\frac{1}{2}$…①,
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$=$\frac{1}{3}$+$\frac{1}{4}$…②,
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$=$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$…③,…
根据以上事实,由归纳推理可得:
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$+$\frac{1}{7}$-$\frac{1}{8}$=$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$
当n∈N*时,1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$…+$\frac{1}{200n-1}$-$\frac{1}{200n}$=$\frac{1}{100n+1}$+…+$\frac{1}{200n-1}$+$\frac{1}{200n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.第12届全国人大四次会议于2016年3月5日至3月16日在北京召开.为了搞好对外宣传工作,会务组选聘了16名男记者和14名女记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.
(1)根据以上数据完成以下2×2列联表:
会俄语不会俄语总计
总计30
(2)能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关?
下面的临界值表供参考:
 P(K2≥k)0.150.100.050.0250.0100.0050.001
  k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案