精英家教网 > 高中数学 > 题目详情

【题目】在学校体育节中,某班全体40名同学参加跳绳、踢毽子两项比赛的人数统计如下:

参加跳绳的同学

未参加跳绳的同学

参加踢毽的同学

9

4

未参加踢毽的同学

7

20

(1)从该班随机选1名同学,求该同学至少参加上述一项活动的概率;

(2)已知既参加跳绳又参加踢毽的9名同学中,有男生5名,女生4名,现从这5名男生,4名女生中各随机挑选1人,求男同学甲未被选中且女同学乙被选中的概率.

【答案】(1)(2)

【解析】试题分析:

(1)首先求得至少参加上述一项活动的同学有人,然后由古典概型公式求解概率为.

(2)利用题意写出所有可能的时间,由题意确定男同学甲未被选中且女同学乙被选中的事件的个数,然后利用公式求解概率为.

试题解析:

解:(1)由表可知,既参加跳绳又参加踢毽的同学人,只参加踢毽的同学人,

只参加跳绳的同学人,所以至少参加上述一项活动的同学有人.

设“该同学至少参加上述一项活动”为事件,则

(2)设5名男同学为甲,1,2,3,4;4名女同学为乙,5,6,7.

所有可能的结果有:(甲,乙),(甲,5),(甲,6),(甲,7),(1,乙),(1,5),(1,6),(1,7),(2,乙),(2,5),(2,6),(2,7),(3,乙),(3,5),(3,6),(3,7),(4,乙),(4,5),(4,6),(4,7),共计20种.

记“男同学甲未被选中且女同学乙被选中”为事件B,

共包含(1,乙),(2,乙),(3,乙),(4,乙),共4个结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中__________为真命题(把所有真命题的序号都填上).

①“”成立的必要条件是“”;

②“若成等差数列,则”的否命题;

③“已知数列的前项和为,若数列是等比数列,则成等比数列.”的逆否命题;

④“已知上的单调函数,若,则”的逆命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,关于的不等式只有两个整数解,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式为12x2﹣ax>a2
(1)当a=2时,求不等式的解集;
(2)当a∈R时,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}中,a2﹣a1=2,且2a2为3a1和a3的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=2log3an+1,且数列{ }的前n项和为Tn . 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各式的大小关系正确的是(
A.sin11°>sin168°
B.sin194°<cos160°
C.tan(﹣ )<tan(﹣
D.cos(﹣ )>cos

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答如下问题;
(1)求分数在[50,60)的频率及全班的人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)根据频率分布直方图,估计该班数学成绩的平均数与中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过两点 且圆心在直线

(Ⅰ)求圆的标准方程;

(Ⅱ)直线过点且与圆有两个不同的交点 ,若直线的斜率大于0,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,是否存在直线使得弦的垂直平分线过点,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 底面,底面是直角梯形, ,点上,且

(Ⅰ)已知点上,且,求证:平面平面

(Ⅱ)当二面角的余弦值为多少时,直线与平面所成的角为

查看答案和解析>>

同步练习册答案