【题目】已知命题 ,使 恒成立,命题 使函数 有零点, 若命题“ ”是真命题,求实数 的取值范围.
【答案】解:命题 当 时, ,要使 恒成立,需满足 ;命题 ,当 时,
, ,要使
函数 有零点,需满足 ,因为命题“ ”为真命题,所以 真, 真,所以
【解析】本题抓住“命题“ p ∧ q ”是真命题”即 p与 q都为真命题:1.命题 p为真命题必须满足 x ∈ [ 0 , 1 ] , ( ) x 1 ≥ m即m要比 ( ) x 1的最小值要小或者等于即可解出此时对应的实数 m 的取值范围;2.命题 q为真命题必须满足 x ∈ [ , ] , 使函数 f ( x ) = 3 sin x + cos x m 有零点,首先就是对 f ( x )化解,结合 x ∈ [ , ] 抓住f ( x )有零点,解出相应的实数 m 的取值范围。
科目:高中数学 来源: 题型:
【题目】已知曲线 的极坐标方程是 ,以极点为平面直角坐标系的原点,极轴为 轴的正半轴,建立平面直角坐标系,在平面直角坐标系 中,直线 经过点 ,倾斜角 .
(1)写出曲线 的直角坐标方程和直线 的参数方程;
(2)设 与曲线 相交于 , 两点,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2) 表示开始第4次发球时乙的得分,求 的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·新课标I卷)选修4-5:不等式选讲
已知函数f(x)=|x+1|-2|x-a|, a>0.
(1)当a=1时求不等式f(x)>1的解集;
(2)若f(x)图像与x轴围成的三角形面积大于6,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若向量 、 、 的起点与终点M、A、B、C互不重合且无三点共线,且满足下列关系(O是空间任一点),则能使向量 、 、 成为空间一组基底的关系是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了月日至月日的每天昼夜温差与实验室每天每颗种子中的发芽数,得到如下资料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差/摄氏度 | |||||
发芽数/颗 |
该农科所确定的研究方案是:先从这组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.
(1)求选取的组数据恰好是不相邻天的数据的概率;
(2)若选取的是月日与月日的两组数据,请根据月日至日的数据,求出关于的线性回归方程,由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(2)中所得试的线性回归方程是否可靠?
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数据是上海普通职工n个人的年收入,设n个数据的中位数为x,平均数为y,方差为z,如果再加上世界首富的年收入 , 则这n+1个数据中,下列说法正确的是 ( )
A.年收入平均数大大增加,中位数一定变大,方差可能不变
B.年收入平均数大大增加,中位数可能不变,方差变大
C.年收入平均数大大增加,中位数可能不变,方差也不变
D.年收入平均数可能不变,中位数可能不变,方差可能不变
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com