【题目】某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:其中x是仪器的月产量.
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润.)
科目:高中数学 来源: 题型:
【题目】在三棱锥P﹣ABC中.侧梭长均为4.底边AC=4.AB=2,BC=2 ,D.E分别为PC.BC的中点. 〔I)求证:平面PAC⊥平面ABC.
(Ⅱ)求三棱锥P﹣ABC的体积;
(Ⅲ)求二面角C﹣AD﹣E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益、养鸡的收益与投入(单位:万元)满足 .设甲合作社的投入为(单位:万元).两个合作社的总收益为(单位:万元).
(1)当甲合作社的投入为25万元时,求两个合作社的总收益;
(2)试问如何安排甲、乙两个合作的投入,才能使总收益最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度y(单位:毫克/立方米)随着时间x(单位:天)变化的函数关系式近似为,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.
(Ⅰ)若一次喷洒4个单位的去污剂,则去污时间可达几天?
(Ⅱ)若第一次喷洒2个单位的去污剂,6天后再喷洒 个单位的去污剂,要使接下来的4天中能够持续有效去污,试求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了检查一条流水线的生产情况,从该流水线上随机抽取40件产品,测量这些产品的重量(单位:克),整理后得到如下的频率分布直方图(其中重量的分组区间分别为(490,495],(495,500],(500,505],(505,510],(510,515]) (I)若从这40件产品中任取两件,设X为重量超过505克的产品数量,求随机变量X的分布列;
(Ⅱ)若将该样本分布近似看作总体分布,现从该流水线上任取5件产品,求恰有两件产品的重量超过505克的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C过点,且与圆M:关于直线对称.
求圆C的方程;
过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了确定工效,进行了5次试验,收集数据如下:
加工零件个数(个) | 10 | 20 | 30 | 40 | 50 |
加工时间(分钟) | 64 | 69 | 75 | 82 | 90 |
经检验,这组样本数据的两个变量与具有线性相关关系,那么对于加工零件的个数与加工时间这两个变量,下列判断正确的是( )
A. 负相关,其回归直线经过点 B. 正相关,其回归直线经过点
C. 负相关,其回归直线经过点 D. 正相关,其回归直线经过点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数);以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求曲线的普通方程与曲线的直角坐标方程;
(Ⅱ)若把曲线各点的横坐标伸长到原来的倍,纵坐标变为原来的,得到曲线,求曲线的方程;
(Ⅲ)设为曲线上的动点,求点到曲线上点的距离的最小值,并求此时点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com