精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系x0y中,把曲线α为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程

1)写出的普通方程和的直角坐标方程;

2)设点M上,点N上,求|MN|的最小值以及此时M的直角坐标.

【答案】1的普通方程为的直角坐标方程为. 2)最小值为,此时

【解析】

1)由的参数方程消去求得的普通方程,利用极坐标和直角坐标转化公式,求得的直角坐标方程.

2)设出点的坐标,利用点到直线的距离公式求得最小值的表达式,结合三角函数的指数求得的最小值以及此时点的坐标.

1)由题意知的参数方程为为参数)

所以的普通方程为.由,所以的直角坐标方程为.

2)由题意,可设点的直角坐标为

因为是直线,所以的最小值即为的距离

因为

当且仅当时,取得最小值为,此时的直角坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右顶点分别为,上顶点为,右焦点为,已知

1)证明:

2)已知直线的倾斜角为,设为椭圆上不同于的一点,为坐标原点,线段的垂直平分线交点,过且垂直于的直线交轴于点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线在第一象限的交点为,椭圆的左、右焦点分别为,其中也是抛物线的焦点,且.

1)求椭圆的方程;

2)过的直线(不与轴重合)交椭圆两点,点为椭圆的左顶点,直线分别交直线于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=k(x+1)(k>0)与抛物线C相交于AB两点,FC的焦点,若|FA|=2|FB|,则|FA| =

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界互联网大会是由中国倡导并每年在浙江省嘉兴市桐乡乌镇举办的世界性互联网盛会,大会旨在搭建中国与世界互联互通的国际平台和国际互联网共享共治的中国平台,让各国在争议中求共识在共识中谋合作在合作中创共赢.20191020日至22日,第六届世界互联网大会如期举行,为了大会顺利召开,组委会特招募了1 000名志愿者.某部门为了了解志愿者的基本情况,调查了其中100名志愿者的年龄,得到了他们年龄的中位数为34岁,年龄在岁内的人数为15,并根据调查结果画出如图所示的频率分布直方图:

1)求的值并估算出志愿者的平均年龄(同一组的数据用该组区间的中点值代表);

2)这次大会志愿者主要通过现场报名和登录大会官网报名,即现场和网络两种方式报名调查.100位志愿者的报名方式部分数据如下表所示,完善下面的表格,通过计算说明能

否在犯错误的概率不超过0.001的前提下,认为选择哪种报名方式与性别有关系”?

男性

女性

总计

现场报名

50

网络报名

31

总计

50

参考公式及数据:,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的图象在处的切线与直线平行.

(1)求函数的极值;

(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”,讲的是西施浣纱的故事;“落雁”,指的就是昭君出塞的故事;“闭月”,是述说貂蝉拜月的故事;“羞花”,谈的是杨贵妃醉酒观花时的故事.她们分别是中国古代的四大美女.某艺术团要以四大美女为主题排演一部舞蹈剧,已知乙扮演杨贵妃,甲、丙、丁三人抽签决定扮演的对象,则甲不扮演貂蝉且丙扮演昭君的概率为(

A.B.

C.D.

查看答案和解析>>

同步练习册答案