精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)判断函数的单调性;

2)若函数有极大值点,求证:.

【答案】(1)见解析;(2)证明见解析

【解析】

1)对求导,得到,然后判断的根的情况,得到的正负,然后得到的单调性;(2)由(1)可得,且,由,所以只需证,令,利用导数研究出的单调性和最值,结合,得到时,,从而得以证明.

(1)由题意,知,对于方程

①当时,上单调递增.

②当时,令,则

时,,函数单调递增;

时,,函数单调递减,

时,,函数单调递增.

综上所述,当时,上单调递增;

时,上单调递增,在上单调递减.

(2)由(1)可知当时,在处时,函数取得极大值,

所以函数的极大值点为,则

要证

只需证

只需证

时,单调递增;

时,单调递减,

所以上单调递减,又

时,

,则

从而可证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为.

1)求函数的解析式;

2)若关于的方程fx)=kex(其中e为自然对数的底数)恰有两个不同的实根,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若内单调递减,求实数的取值范围;

(Ⅱ)若函数有两个极值点分别为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列A: ,… ().如果对小于()的每个正整数都有 ,则称是数列A的一个“G时刻”.是数列A的所有“G时刻组成的集合.

(1)对数列A:-2,2,-1,1,3,写出的所有元素

(2)证明:若数列A中存在使得>,则

(3)证明:若数列A满足- ≤1(n=2,3, …,N),的元素个数不小于 -.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于曲线C所在平面上的定点,若存在以点为顶点的角,使得对于曲线C上的任意两个不同的点AB恒成立,则称角为曲线C相对于点界角,并称其中最小的界角为曲线C相对于点确界角.曲线相对于坐标原点确界角的大小是 _________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有五个命题

函数的最小正周期是

终边在y轴上的角的集合是

在同一坐标系中,函数的图象和函数的图象有一个公共点;

把函数

中,若,则是等腰三角形

其中真命题的序号是( )

A.(1)(2)(3) B.(2)(3)(4

C.(3)(4)(5) D.(1)(4)(5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记不等式组 ,表示的平面区域为 .下面给出的四个命题: 其中真命题的是:

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的个数是(

①在中,“”是“”的必要不充分条件;

②若的最小值为2

③夹在圆柱的两个平行截面间的几何体是圆柱;

④数列的通项公式为,则数列的前项和.(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中a.

1)求的单调区间;

2)若存在极值点,且,其中,求证:

3)设,函数,求证:在区间上的最大值不小于.

查看答案和解析>>

同步练习册答案