精英家教网 > 高中数学 > 题目详情

【题目】过点C(3,4)且与轴,轴都相切的两个圆的半径分别为,则=______

【答案】25

【解析】

满足与x轴,y轴都相切的圆的圆心在第一象限,设出圆心(a,a),根据切线的性质得到半径r=a,表示出圆的标准方程,由C在此圆上,将C的坐标代入圆的方程中得到关于a的一元二次方程,根据r1,r2为此一元二次方程的两个解,利用根与系数的关系即可得出r1r2的值.

由题意得:满足与x轴,y轴都相切的圆的圆心在第一象限,设圆心坐标为(a,a),则半径r=a,∴圆的方程为(x﹣a)2+(y﹣a)2=a2C(3,4)在此圆上,

C的坐标代入得:(3﹣a)2+(4﹣a)2=a2整理得:a2﹣14a+25=0,

∵r1,r2分别为a2﹣14a+25=0的两个解,∴r1r2=25.

故答案为:25

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,平面,点分别为中点.

(1)求证:直线平面

(2)求证:

(3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让学生更多的了解数学史知识,梁才学校高二年级举办了一次追寻先哲的足迹,倾听数学的声音的数学史知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:

序号

分组

组中值

频数

频率

i

(分数)

Gi

(人数)

Fi

1

65

0.12

2

75

20

3

85

0.24

4

95

合计

50

1

(1)填充频率分布表中的空格;

(2)为鼓励更多的学生了解数学史知识,成绩不低于85分的同学能获奖,请估计在

参加的800名学生中大概有多少名学生获奖?(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线y= x2的焦点,离心率等于
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若 1 ,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求与双曲线有相同的焦点且过点的双曲线标准方程;

(2)求焦点在直线上的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】进入冬季以来,我国北方地区的雾霾天气持续出现,极大的影响了人们的健康和出行,我市环保局对该市2015年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为(5,15],(15,25],(25,35],(35,45],由此得到样本的空气质量指数频率分布直方图,如图.

(1)求a的值;
(2)如果空气质量指数不超过15,就认定空气质量为“特优等级”,则从今年的监测数据中随机抽取3天的数值,其中达到“特优等级”的天数为X.求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax,其中e为自然对数的底数,a为常数.
(1)若对函数f(x)存在极小值,且极小值为0,求a的值;
(2)若对任意x∈[0, ],不等式f(x)≥ex(1﹣sinx)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,其焦点与双曲线的焦点重合,且椭圆的短轴的两个端点与其一个焦点构成正三角形.

(1)求椭圆的方程;

(2)过双曲线的右顶点作直线与椭圆交于不同的两点.

①设,当为定值时,求的值;

②设点是椭圆上的一点,满足,记的面积为的面积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数y=f(x)的极值;
(2)若存在实数x0∈(﹣1,0),且 ,使得 ,求实数a的取值范围.

查看答案和解析>>

同步练习册答案