精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=2$\sqrt{3}$sin($\frac{π}{4}$+$\frac{x}{2}$)sin($\frac{π}{4}$-$\frac{x}{2}$)-sin(π+x),且函数y=g(x)的图象与函数y=f(x)的图象关于直线x=$\frac{π}{4}$对称.
(1)若存在x∈[0,$\frac{π}{2}$),使等式[g(x)]2-mg(x)+2=0成立,求实数m的最大值和最小值
(2)若当x∈[0,$\frac{11π}{12}$]时不等式f(x)+ag(-x)>0恒成立,求a的取值范围.

分析 (1)先求出f(x),g(x)的解析式,确定g(x)∈[1,2],等式[g(x)]2-mg(x)+2=0,可化为m=y+$\frac{2}{y}$,即可求实数m的最大值和最小值
(2)当x∈[0,$\frac{11π}{12}$]时,f(x)∈[-$\sqrt{2}$,1],g(-x)∈[-1,1],利用当x∈[0,$\frac{11π}{12}$]时不等式f(x)+ag(-x)>0恒成立,求a的取值范围.

解答 解:(1)f(x)=$\sqrt{3}$sin(x+$\frac{π}{2}$)+sinx=$\sqrt{3}$cosx+sinx=2sin(x+$\frac{π}{3}$).
函数y=g(x)的图象上取点(x,y),关于直线x=$\frac{π}{4}$对称点的坐标为($\frac{π}{2}$-x,y),
代入f(x)=2sin(x+$\frac{π}{3}$),可得y=2sin($\frac{5π}{6}$-x),
x∈[0,$\frac{π}{2}$),则$\frac{5π}{6}$-x∈[$\frac{π}{3}$,$\frac{5π}{6}$],∴y∈[1,2],
等式[g(x)]2-mg(x)+2=0,可化为m=y+$\frac{2}{y}$,
∴y=$\sqrt{2}$时,m的最小值为2$\sqrt{2}$;m=1或2时,m的最大值为3;
(2)当x∈[0,$\frac{11π}{12}$]时,f(x)∈[-$\sqrt{2}$,1],g(-x)∈[-1,1],
∵当x∈[0,$\frac{11π}{12}$]时不等式f(x)+ag(-x)>0恒成立,
∴a$<-\sqrt{2}$或a$>\sqrt{2}$.

点评 本题考查三角函数的化简,考查函数的最值,考查恒成立,正确求出函数的解析式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.不等式2x(3-x)≥0的解集是(  )
A.(-∞,-2]∪[3,+∞)B.[2,3]C.(-∞,0]∪[3,+∞)D.[0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某几何体三视图如右,其中左视图是边长为2的正三角形,主视图为矩形且AA1=3,D为AA1中点.
(1)求该几何体的体积;
(2)求证:平面BB1C1C⊥平面BDC1; 
(3)BC边上是否存在点P,使AP∥平面BDC1.若存在,证明该结论,不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(n)=k(k∈N+),k是π的小数点后的第n位数字,π=3.1415926535…,则$\underset{\underbrace{f(f…f(f(10)))}}{n个f}$(n≥6)等于(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线y=$\frac{1}{2}$与曲线y=2sin(x+$\frac{π}{2}$)cos(x-$\frac{π}{2}$)在y轴右侧的交点自左向右依次记为M1,M2,M3,…,则$\overrightarrow{|{M_1}{M_{13}}}$|等于(  )
A.B.C.12πD.13π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在空间直角坐标系o-xyz中,点A(1,2,2),则|OA|=3,点A到坐标平面yOz的距离是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数$y=\sqrt{3}cosx+sinx,(x∈R)$的图象向右平移θ(θ>0)个单位长度后,所得到的图象关于y轴对称,则θ的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD的底面是边长为2的菱形,∠BAD=60°,△PAD是等边三角形,且$PB=\sqrt{6}$,M是棱PC上除P、C的任意一点,且$\frac{PM}{PC}=λ$
(1)当$λ=\frac{1}{3}$时,求证:平面BDM⊥平面ABCD
(2)平面BDM将四棱锥分成两部分,当$λ=\frac{1}{2}$,求两部分体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.等比数列{an}中,a1+a4=20,a2+a5=40,求它的前6项和s6

查看答案和解析>>

同步练习册答案