精英家教网 > 高中数学 > 题目详情
已知抛物线C:x2=2py(p>0)上一点A(m,4)到其焦点F的距离为
17
4

(1)求P与m的值;
(2)若直线l过焦点F交抛物线于P,Q两点,且|PQ|=5,求直线l的方程.
(1)由
17
4
=4+
p
2
,∴p=
1
2

∴x2=y,
∴m2=4,m=±2
(2)可设PQ的方程为l:y=kx+
1
4

联立
y=kx+
1
4
x2=y

消去x,得y2-(
1
2
+k2)y+
1
16
=0,
∴y1+y2=
1
2
+k2
而|PQ|=y1+y2+p=1+k2=5,
∴k2=5-1=4,k=±2.
∴直线l的方程为y=2x+
1
4
或y=-2x+
1
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

过点M(1,1)作一直线与椭圆
x2
9
+
y2
4
=1相交于A,B两点,若M点恰好为弦AB的中点,则AB所在直线的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=
5
5
,过F1的直线交椭圆于M、N两点,且△MNF2的周长为4
5

(Ⅰ)求椭圆E的方程;
(Ⅱ)设AB是过椭圆E中心的任意弦,P是线段AB的垂直平分线与椭圆E的一个交点,求△APB面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l:y=x+2,与抛物线x2=y交于A(xA,yA),B(xB,yB)两点,l与x轴交于点C(xC,0).
(1)求证:
1
xA
+
1
xB
=
1
xC

(2)求直线l与抛物线所围平面图形的面积;
(3)某同学利用TI-Nspire图形计算器作图验证结果时(如图1所示),尝试拖动改变直线l与抛物线的方程,发现
1
xA
+
1
xB
1
xC
的结果依然相等(如图2、图3所示),你能由此发现出关于抛物线的一般结论,并进行证明吗?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一动圆过定点P(0,1),且与定直线l:y=-1相切.
(1)求动圆圆心C的轨迹方程;
(2)若(1)中的轨迹上两动点记为A(x1,y1),B(x2,y2),且x1x2=-16.
①求证:直线AB过一定点,并求该定点坐标;
②求|PA|+|PB|的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),经过点(3,-2)与向量(-1,1)平行的直线l交椭圆C于A,B两点,交x轴于M点,又
AM
=2
MB

(Ⅰ)求椭圆C长轴长的取值范围;
(Ⅱ)若|
AB
|=
3
2
2
,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1.
(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;
(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;
(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=x,直线l:y=k(x-1)+1,要使抛物线C上存在关于对称的两点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的方程为x2+y2=4,过点M(2,4)作圆的两条切线,切点分别为A1、A2,直线A1A2恰好经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线x=-1与椭圆相交于A、B两点,P是椭圆上异于A、B的任意一点,直线AP、BP分别交定直线l:x=-4于两点Q、R,求证
OQ
OR
为定值.

查看答案和解析>>

同步练习册答案