精英家教网 > 高中数学 > 题目详情

【题目】平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以元罚款,记分的行政处罚.如表是本市一主干路段监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:

月份

违章驾驶员人数

(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程

(Ⅱ)预测该路段月份的不“礼让斑马线”违章驾驶员人数.

参考公式:

【答案】(Ⅰ);(Ⅱ)人.

【解析】

(Ⅰ)计算出,然后根据公式,求出,得到回归直线方程;(Ⅱ)根据回归直线方程,代入

解:(Ⅰ)由表中数据,计算;

所以之间的回归直线方程为

(Ⅱ)时,

预测该路段月份的不“礼让斑马线”违章驾驶员人数为人.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求证:CD⊥AP;
(2)若CD⊥PD,求证:CD∥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将边长为1的正方形沿对角线折起,使得平面平面,在折起后形成的三棱锥中,给出下列四种说法:

是等边三角形;②;③;④直线所成的角的大小为.其中所有正确的序号是( )

A. ①③B. ②④C. ①②③D. ①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假定某射手射击一次命中目标的概率为.现有4发子弹,该射手一旦射中目标,就停止射击,否则就一直独立地射击到子弹用完.设耗用子弹数为X,求:

(1)X的概率分布;

(2)数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;

(2)若 都是从区间上任取的一个数,求成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形, 平面分别为的中点,且.

(1)求证:平面平面

(2)求证:平面P

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面四边形ABCD为菱形,A1A=AB=2,∠ABC= ,E,F分别是BC,A1C的中点.
(1)求异面直线EF,AD所成角的余弦值;
(2)点M在线段A1D上, =λ.若CM∥平面AEF,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了人,回答问题计结果如下图表所示:

1)分别求出的值;

(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人?

(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在等腰梯形,垂足为.将沿折起到的位置,使平面平面,如图2所示,点为棱的中点.

1)求证:平面

2)求证:平面

3)求三棱锥的体积.

查看答案和解析>>

同步练习册答案