【题目】为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.
(1)求图中的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.
【答案】(1) ;中位数为82.5. (2)
【解析】
(1)根据频率之和为1,结合频率分布直方图对应矩形区域面积求解即可;先结合数值预判中位数所在组距应在80到90之间,设综合评分的中位数为,结合频率计算公式求解即可;
(2)先结合分层抽样计算出一等品所占比例,再采用列举法表示出所有基本事件,结合古典概率公式求解即可
(1)由频率和为1,得,;
设综合评分的中位数为,则,解得,
所以综合评分的中位数为82.5.
(2)由频率分布直方图知,一等品的频率为,即概率为0.6;
所以100个产品中一等品有60个,非一等品有40个,则一等品与非一等品的抽样比为3:2;
所以现抽取5个产品,一等品有3个,记为、、,非一等品2个,记为、;
从这5个产品中随机抽取2个,基本事件为:、、、、、、、、、共10种;
抽取的这2个产品中恰有一个一等品的事件为:、、、、、共6种,
所以所求的概率为.
科目:高中数学 来源: 题型:
【题目】设复数与复平面上点对应.
(1)若是关于的一元二次方程的一个虚根,且,求实数的值;
(2)设复数满足条件(其中、常数),当为奇数时,动点的轨迹为,当为偶数时,动点的轨迹为,且两条曲线都经过点,求轨迹与的方程;
(3)在(2)的条件下,轨迹上存在点,使点与点的最小距离不小于,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题:方程表示焦点在轴上的双曲线:命题:若存在,使得成立.
(1)如果命题是真命题,求实数的取值范围;
(2)如果“”为假命题,“”为真命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,是函数的图象上任意两点,若为,的中点,且的横坐标为.
(1)求;
(2)若,,求;
(3)已知数列的通项公式(,),数列的前项和为,若不等式对任意恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在实数集R上的函数,且y=f(x+1)是偶函数,当x≥1时,f(x)=2x﹣1,则f(),f(),f()的大小关系是( )
A. f()<f()<f() B. f()<f()<f()
C. f()<f()<f() D. f()<f()<f()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过点且与直线相切,圆心的轨迹为曲线.
(1)求曲线的方程;
(2)若,是曲线上的两个点且直线过的外心,其中为坐标原点,求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前n项和为,对任意的正整数n,都有成立,记.
(1)求数列与数列的通项公式;
(2)求证:①对恒成立.②对恒成立,其中为数列的前n项和.
(3)记,为的前n项和,求证:对任意正整数n,都有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道,且两边是两个关于走道对称的三角形(和).现考虑方便和绿地最大化原则,要求点与点均不重合,落在边上且不与端点重合,设.
(1)若,求此时公共绿地的面积;
(2)为方便小区居民的行走,设计时要求的长度最短,求此时绿地公共走道的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com