精英家教网 > 高中数学 > 题目详情

【题目】如图,某城市有一块半径为40m的半圆形绿化区域(以O为圆心,AB为直径),现对其进行改建,在AB的延长线上取点D,OD=80m,在半圆上选定一点C,改建后绿化区域由扇形区域AOC和三角形区域COD组成,其面积为Scm2 . 设∠AOC=xrad.

(1)写出S关于x的函数关系式S(x),并指出x的取值范围;
(2)试问∠AOC多大时,改建后的绿化区域面积S取得最大值.

【答案】
(1)解:由题意,S= +

=800x+1600sinx(0≤x≤π)


(2)解:S′=800+1600cosx,

∴0≤x≤ ,S′>0,x> ,S′<0,

∴x= ,S取得最大值 +800 m2


【解析】(1)求出扇形区域AOC、三角形区域COD的面积,即可求出S关于x的函数关系式S(x),并指出x的取值范围;(2)求导数,确定函数的单调性,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列满足:

(1)求数列的通项公式

(2),求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是公差为d的等差数列,{bn}是公比为q(q≠1)的等比数列.记cn=bn﹣an
(1)求证:数列{cn+1﹣cn+d}为等比数列;
(2)已知数列{cn}的前4项分别为9,17,30,53.
①求数列{an}和{bn}的通项公式;
②是否存在元素均为正整数的集合A={n1 , n2 , …,nk},(k≥4,k∈N*),使得数列cn1 , cn2 , …,cnk等差数列?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为数列{an}的前n项和,a1=1,2Sn=(n+1)an , 若关于正整数n的不等式an2﹣tan≤2t2的解集中的整数解有两个,则正实数T的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①设为直线,为平面,且,则“”是“”的充要条件;

②若的充分不必要条件,则的必要不充分条件;;

已知为两个命题,若“”为假命题,则“为真命题”

④若不等式恒成立,则的取值范围是

⑤若命题,则

其中真命题的序号是____________(写出全部真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家举行大型的促销活动,经测算某产品当促销费用为万元时,销售量万件满足(其中 为正常数),现假定生产量与销售量相等,已知生产该产品万件还需投入成本万元(不含促销费用),产品的销售价格定为万元/万件.

(1)将该产品的利润万元表示为促销费用万元的函数;

2)促销费用投入多少万元时,厂家的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前n项和,且.

1)求数列的通项公式

2)令,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的焦距为2,且过点.

(1)求椭圆的方程;

(2)若点分别是椭圆的左右顶点,直线经过点且垂直与轴,点是椭圆上异于的任意一点,直线于点.

①设直线的斜率为,直线的斜率为,求证:为定值;

②设过点垂直于的直线为 ,求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.a∈R,“ <1”是“a>1”的必要不充分条件
B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件
C.命题“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.命题p:“?x∈R,sinx+cosx≤ ”,则¬p是真命题

查看答案和解析>>

同步练习册答案