【题目】如图椭圆的上下顶点为A、B,直线: ,点P是椭圆上异于点A、B的任意一点,连结AP并延长交直线于点N,连结BP并延长交直线于点M,设AP、BP所在直线的斜率分别为,若椭圆的离心率为,且过点,(1)求的值,并求最小值;(2)随着点P的变化,以MN为直径的圆是否恒过定点,若过定点,求出该定点坐标;若不过定点,请说明理由。
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中, ,顶点在底面 上的射影恰为点 ,且.
(1)求棱 与所成的角的大小;
(2)在棱 上确定一点,使,并求出二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某港口船舶停靠的方案是先到先停.
(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.
(2)根据以往经验,甲船将于早上到达,乙船将于早上到达,请应用随机模拟的方法求甲船先停靠的概率,随机数模拟实验数据参考如下:记, 都是之间的均匀随机数,用计算机做了100次试验,得到的结果有12次满足,有6次满足.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆 的左右焦点分别为的、,离心率为;过抛物线焦点的直线交抛物线于、两点,当时, 点在轴上的射影为。连结并延长分别交于、两点,连接; 与的面积分别记为, ,设.
(Ⅰ)求椭圆和抛物线的方程;
(Ⅱ)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的圆心在直线: 上,与直线: 相切,且截直线: 所得弦长为6
(Ⅰ)求圆的方程
(Ⅱ)过点是否存在直线,使以被圆截得弦为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(I)求函数的对称轴方程;
(II)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若分别是△ABC三个内角A,B,C的对边,a=2,c=4,且,求b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过原点的动直线与圆相交于不同的两点.
(1)求线段的中点的轨迹的方程;
(2)是否存在实数,使得直线与曲线只有一个交点?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com